MODULE" -7

SRICTLY CONVEX LINER METRIC SPACES AND
THEIR GENERALIZATION

INTRODUCTION

The present module is a study of strictly convex linear
metric spaces. The notion of strict convexity in normed linear
spaces was introduced independently by J.A. Clarkson and M.G.
krein in 1935 ( [5]). Different mathematicians calls(‘agictly convex

normed spaces by different names such as @ normalized ,
rotund and strongly convex ( [5]). Ahuja and Trehan ([1])
extended the notion of strict convexityCﬁ:r metric spaces in
1977 . Later the study was pursued by K.P.R. Sastry, S.V.R.
Naidu, T.D. Narang, concept o%rict convexity to linear metric
spaces, whatever literature VQJQVailable, the uniquencess of best
approximation was esta '%ed only in normed linear spaces and
not in linear metric s&. This motivated the extension of the
notion of strict convexity to linear metric spaces. Various forms of
strict conve'%&and its relation with other spaces have been
discussed by sastry and naidu ([9]) and ([10]). Some
characterizations of strictly convex linear metric spaces were
given by Naran in [3] and [4]. Throughout this module , the
underlying field will be either the field of real numbers or the field

of complex numbers.

This module 'Strictly Convex Linear Metric Spaces and their
Generalizations' has been divided into two sections. The first

section deals with the definition and some examples of strictly
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convex linear metric spaces. In this section, we also prove some
properties of linear metric spaces. In the second section, we give
specail linear metric spaces i.e. linear metric spaces with

properties : A, B, C, S.C., P.S.C., B.C., P and B To star with, we

set up some notations and terminology to be used in this Module
7 and Module 8.

The symbol € will stand for belongs to, iff for if and only if,
s.c. for strictly convex, n.1.s. for normed linear space, dim A for
dimenstion of a set A, f.d. for finite dimen?’g’lal, inf. for
inrimum, sup. for supremum, min. for mi m, max. for
maximum, int. for interior, R" for the n—dﬂégnsional Euclidean
space, C"for n-dimensional unitary s WR* for the set of non-
negative real numbers. @ for the empty set, conv (A) for the
convex hull of a set A, Cl A for the closure of a set A, dA denotes
the topological boundary of @ for the quotient space of E by

generated by an elem

G, E\G for the comple e% a set G in E, [x] for the subspace
%X, R[f (x)] for the real part of f(x),

Im[f(x)] for the imaginary part of f(x), d (X, G) for the distance of x

from a set IQ& segment [x, y|] for the set {ax + (1-a)y, 0 < a <
1}, ] %,y [ for

e open line segment {ax + (1-a)y, 0 < a < 1}, Xn— X
for x, converges to x weakly. In a linear metric space (X, d), B [0, r] = {x €
X, d (0, x) < r} will stand for the closed ball with centre 0 and radius r, B
(0,r) = {xeX d (0, x) <r} will stand for the open ball with centre 0 and
radius r and the functional d (0,-) = 1-1 defined on X is called quasinorm
of X.

Other notations will be given whenever these occur. The

numbers within square barackets indicate references cited at the

end of the Mod.
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1. PRELIMANARIES

Definition 1.1 A subset A or a linear space X is said to be

convex if with any two points x, y of A, it contains the line

segment joining two points i.e. X, y € A, a €] 0,1 [imply ax + (1- a)y €

A. Itis said to be mid-point convex if éX + % y € A for any two points

X,y €A

Definition 1.2 If A is any set in a linear space X then

intersection of all the convex sets containing A is called the

convex hull of A ‘@
Definition 1.3 A set V in a linear space T& d to be linear

manifold if it is of form V = xo + G = { 3%» g € G}, where x,e X

and G is a linear subspace of X i.e. a translate of a linear

subspace of X is called a linear manifold.
A closed linear manifold @'is called a hyperplane if there

exists no closed linear % H, ¢ X such that Hc H land H# X

i.e. H is the maximal cl linear manifold in X.

Definition 1.4 A set of the form {x € L, r (x)=2 «} where L is an n-

dimensional u@paoe of a linear space X (n, a natural number,
1 <n < dim ©) f is a linear functional on L, and a is a real

number, is called an (closed) n-dimensional half plane.

Definition 1.5 A subset A of a linear space X is called

symmetric if {x:xe A} = A

Definition 1.6 A set X with a family 3 of subsets of X is called a

topological space if (3 satisfies the following conditions:

(a) The empty set @ and the whole set X belong to .
(b) The union of any number or mebers of  is again a member

of B3.
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(c) The intersection of any finite number of members of 8 is again a
member of 3.
The family f is called a topology for X, and the members of 3 are
called open sets of X in this topology.

Definition 1.7 A vector space X over a field K, together with a

Housdorff topology 3 is called a topological linear space if the vector
space operations (x,y) = x+ y from X x X into X and (a, X) = a x from Kx X

into X are continous.

Definition 1.8 A topological linear space is to be locally

convex if it has a base of convex neighb

Definition 1.9 A linear space X is cal linear metric space

if it is a topological linear space with topology derived from an
invariant metric i.e. d(x, +y,x, + W(xl,xz) for every choice of x,, x,
and y in X. Q;Q

Equivalently, a metri@gé (X, d) is said to be a linear metric

space if

(i) It is alinear space.
(ii) Add%?nd scalar multiplications are continuous i.e. for

<X X, <y, > >V, <a > > aq,
<x ty > - xtyand o, X, > - aX, and

(iii) d is translation invariant i.e. d (X, +y, X,+y) = d(X,,X,) for
every choice of x,, x,,y, in X.

Definition 1.10 A linear metric space (X, d) is said to be
bounded liner metric space if the metric d is bounded i.e. there
exists r > O such that
r=sup d (x, 0).
x e X
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Definition 1.11 A linear metric space (X, d) is said to be

strongly locally convex if each open sphere in it is a convex

set.

Definition 1.12 A linear space X is said to be normed linear

space if to each X € X, there is assigned a unique real number,

which we denote by HX , satisfying the following properties:

i [x|=0and|x| =0iffx=0
@ [|x+y| < [+ Iyl
(iii) ||a X || = ||05|| + HX , y € Xand for all scalars . (b'
Definition 1.13 A normed linear space (Xﬁ is said to be

strictly convex if for any two po@ and y or X with

x| = [y]=1, HX_;Y -

Definition 1.14 The coniugat%&’ace or dual space of an.l.s.

functionals on X with

X, denoted by X , i gJ space of all continuous linear
%Jsual linear space operations and the

norm defined by |f|| = sup [f(x)
Q'QLxﬂ <|

xeX
Definition 1.15 A normed linear space X is said to be reflexive

if X™= X, where X" stands for the second conjugate space of X.

Definition 1.16 A n. 1. s. X is said to be smooth if every

element x of X with [x| = 1 has a unique support hyperplane to

the open unit ball B(O, 1) = {x: x €E,

x| < 1}.

Definition 1.17 A normed linear space X is said to be strictly

normed if the relation [x +y| = [|x| + |y|, x, ¥y € x\{O}implies
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the existence of a number C > O such that y = C x Such a norm is

called a strict norm.

Definition 1.18 An element xof a n.1,s. X is said to be

orthogonal to an element y of X, xly, if [x+ay| > |x| for every

scalar a. x is said to be orthogonal to a subset G of X, x1G, if

xly for ally € G.

Definition 1.19 Let X be a linear space. A mapping
<k, x>  Xx X — Kk,
the field or scalars is said to be an inner product X if the

following properties hold for all x, y, z e X anq@ll scalars a, 8
e K

(i) <xX,x>2>0forallx eX C\DQ

(ii) <X,y >=<y,X >where < y, x > denotes the complex
conju%%sf <y, x>
(iii) <ax+ﬂy,z>=a%@ + f <y, z>.

The pair (X, <+, ->)isc n inner product space.

Definition 1.20 A complete inner product space is called a
Hilbert space.

Definition Let (X, 3)and (Y, p) be two topological

spaces. Then a mapping f : X - Y is called a homeomorphism
if

(i) f is one-one
(i) f is onto
(iii) f is continous

(iv) fis continous

Definition 1.22 If E and F are two normed liner spaces over

the same field K then a mapping T : E > F is called a linear

transformation if it satisfies the following properties:
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i) Tx+y =Tx+Ty
(i) T(ax)=aT X for any x, y € E and for all a e K.

Linear transformation T is said to be bounded if

|T| =sup |T (x)|is finite
[ <1
xeE

Definition 1.23 A subset A of a metric space (X, d) is said to be

metrically bounded or d-bounded if sup {d (x, 3), X, ye A } is

finite. ‘<®

Definition 1.24 Let G be a subset of space (X, d) and x
be an element of X. An element g, €) G is called a best-

approximation or a nearest point to x in G if

inf
dx, g,) =d (x, G)= i )

g
The set of all elements&is denoted by L,(x)

ie. Ly(x)=1{9,€G,d (%, 9,)=d(x, G) }

G is said to 'i§- oximinal if Lc (x) is non-empty for every x e X.

G is said to be semi-Chebyshev if L (x) is atmost singleton for

every X € X and G is aid to be Chebyshev or uiquely proximinal

if L,(x) is exactly singleton for every x € X .

2.1 SOME BASIC PROPERTIES OF STRICTLY CONVEX
LINEAR METRIC SPACES

We begin with the notion of strictly convex linear metric
space as introduced by Ahuja, Narang and Trehan in [1].
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Definition 2.1.1 [1] A linear metric space (X, d) is said to be

strictly convex if d(x,0)<r,d(y,0)<r imply d (X—;y, 0) < r unless

X =y, X, ye X and r is any positive real number.
Next we give an example of a strictly convex linear metric
space.

Example 2.1.1 [1] The set R of real numbers with metric d

X_
defined by d (x, y) = | y| is a strictly conve 1near metric

1+|X—y| @
space. This can be seen as follows: ‘&

Lex x and y be two distinct points Q?S@vlth d((x,0) <r,d (y,
0) < r. These give

X < I, gleeE

Strict convexity of |-| impli , which in turn implies

X+ty

d ( ,0)

strictly conwv ormed linear space then the linear metric space
[x - vl
1+[x -yl

Remark Z.w{n fact we can say a little more viz. if (X,]|-]|) is a

(X, d) where d is defined asd(x,y) =

is strictly convex.
The following example shows that even a finite dmensional

liner metric space need not be strictly convex.

Example 2.1.1 [1] Consider (R?,d) where d is defined as
B

d(x,y) = max {|X1'Y1 , X
X = (X}, X,), ¥ = (V1,¥2)-
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Letx=(1,1)andy =(1,0)thend (x,0)=1,d (y, 0) = 1 and also

X+y

d ( ,0)=1. Therefore (R?d)is not strictly convex.

The following theorem tells that certain type of linear metric
spaces can never be strictly convex.
Theorem 2.1.1 [8] A non-zero bounded linear metric space in
which the metric attains its superemum is not strictly convex.

Proof : Let (X,d) be a non-zero bounded linear metric space such

that d attains its superemum, say r. Then r > O anpbt'here exists z

€ X such that d (z, O) = r. Take x = E andy = . Then d (x, 0) <

r,d (y, 0) <randx #y, but d((—% =d (z, O) = r. Hence (X,

d) is not strictly convex. Q’

It is well known (se Qgﬂat Every Convex Proximinal set in a
Strictly Convex Norme ar Space is Chebyshev. We show below

that a similar result holds in a strictly convex linear metric space.

Theorem 2.@?4\ convex proximinal set in a strictly convex linear

metric space i ebyshev.

Proof : Let G be a convex proximinal set in a strictly convex linear

metric space (X, d) and let p be any arbitary point on X. Since G is

proximinal, there exists g; € G such that d (p, g;) =d (p, G) = r (say).
Let, if possible, there exists g, € G such that d (p, g,) = T.

Invariance of the metric d implies that

d(p-g,0=dp-8,0=r

Since X is strictly convex, we have
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. ((p—gl);(p—gg),oj -
ie. d (p, %) < r unless g =g,. Since %e G, definition

of r implies that g;=g;. Hence G is Chebyshev.

Now, we give a lemma to be used in Theorem 2.1.3 which shows
that strictly convex linear metric spaces are strongly locally convex — a
notion introcduced by T.D. Narang in [2].
Lemma 2.1.1 [8] Let (X, T) be a topological vector space and S be a
non-empty closed subset of X such that x, y € dS (b ry of S) and x
# y imply (x, y) N S=@. Then S is conve.
Proof: Suppose S is not convex. The %‘bémst X, V € S XN

such that (x,y) N S'=@ (S'is the compement of 8 in X).
Let A={te (0, 1) : tx + (1-t) y € S'} Then A is anon-empty

subset of R. Let B be a compone . Then there exist a, B € R such

Q

a@%-ﬁxm-sw

Then, clearly z,, z, are distinct points of dS- and (z,z,) N S =@ which

thata < B = (a, B). write

z,=ax+t(l-a)y

contrdicts the hypethesis.
Theorem 2. gﬂ

8] In a strictly convex linear metric space, the
balls are convex.

Proof From lemma 2.1.1, it is clear that closed balls with centre
at the origin and hence the open balls with centre at the origin
are convex. Since every ball is a translate of a ball with centre at
the origin, the result is immediate.

2.2 SOME SPECIAL LINEAR METRIC SPACES

In this section, we whall discuss some special linear metric

spaces i.e. linear metric spaces with properties A, B, C, S.C.,
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P.S.C., B.C., P and P, and the relationships of A, B, C, P.S.C.,
B.C., Pand P, with S.C.

We say that a linear metric space (X, d) has the
Property :-

A: Givenr > 0, ¢ > O there exists 6> O such that
B[O, r+8]cB[0, r]+B][O0, €]

B: Given r > 0, € > O there exists 6> 0 such that
d(x,0)>r-6 > sup{d (x+z, 0) : d (z, 0) <¢} > r.

C: Giver >0, € > O there exists 6 > 0 such that@;(, O)<r+d =

there exists y, z such thatd (y, 0) = r, %@& cand x =y + z.

X +y
SC. r>0,x#y,d(x,0)<r = d( T <T.

PS.C.x#0,y#0,d(x+y,0)=d( &’d(y,O) = y= tx for some t > 0.

hrinks distances whenever it exists.

P. A linear metric space éﬂ) is said to have property (P) if the
nearest point map%

X+y

B.C. r>0,d(x,0)=d(y,0) =1 = d( ,0) <r.

B A lineaQ&rfc space (X, d) is said to have property (P,) if for
every pair of elements x, z € X such that d (x + z, 0) < d (x, 0) there
exist constantsb=b (x,z) >0,C=C(x,z) > Gsuchthatd (y+Cz 0) <d
(v,0) ford (y,x) <b.

Lemma 2.2.1 [9] Let f : R" > R" be strictly increasing function such
that (X, fod) is a linear meric space. Then (X, d) has S.C. & (X,

fod) has S.C.

Proof Letr>0and (fed)(x,0)<71,(fed)(y,0) <Tr
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ie fld(x 0)] <t f[d(y, O)<T.

We may assume that there exists zeX such that f [d (z, 0)]=>r. Since
f (d(t z, 0) ) is a continuous function of t on R and hence for some
te]0,1[ ,f(d(tz, 0)) =r so that f'(r) exists.
Clearly f7'(r) >0

dx, 0= f'(1),d(y, 0= f" (1)

+
and so by strict convexity of d, d(%, O)< f' (1) =

+
fd( & 5 y , 0)] < r as fis strictly increasing {b'
Since f! is strictly increasingandd = f'o @ the other
implication follows from the first. (b'

As above, the following lemma can b \QSI established.
Lemma 2.2.2 [9] Let f :R" > R" be a strictly increasing function such
that
(1) f(s+t)<f(s)+{f(t) for a@%e R*and
i) (X, fod)isa lin@%’c space. Then (X, d) has P.S.C. ==>

(X, fod) has P.

Proof : Let(fod)(x+y, 0)=(fod)(x,0)+ (fod) (y, O)
ie. fl%(gﬁy, 0)]=1f[d(x,0)] +fd (y, 0)]
Let d (x, O) dd (y, 0) =t

Now f(s+1t)<r(s)+1ff(t)
= f(d(x,0)+d(y, 0) < f (d(x, 0)) + f(d (v, 0))
(fod) (x+y,0)
f(dx+y,0)

s fdxO0)+d(y,0))
fdx 0+d(y,0) = fdx+y0))

Now since r is a strictly increasing function, we have
d(x 0+d(y,0=dx+y,0)
which implies that y = tx for some t > 0 and so (X, f-d) has P.S.C.
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Suppose f: R* > R* is such that (X, fod) is a linear metric space.
Then f does not satisfy that condition f (s + t) <f(s) + f(t) forall s, t €
R" as is evident from the following example:

Example 2.2 1 [9] The function d defined by d (x, y) = |x—y|1/ *isa

linear Imeric on R. If we define f: R* > R" by f (t) =¢*, then fod is the
usual metric on R. Clearly f does not satisfy the condition.
fs+t)<f(s)+f(t)jforalls,teER’

Given two linear metrics on alinear space X, their Euclidean
combination on X x X is a linear metric while the Euclidean
combination of two strictly convex norms on X is st convex. On X
X X, the same need not be true in the case }8% r metrics as the
following example shows.

Example 2.2.2. [9] Consider the strictly co QX linear metric space (R,
d,), where d,(s. t) = |s—t|1/2 for all s, t €ER. Then

d((x,, yy), (25, Yy)) = |26, — Aﬁ&? el
is the Euclidean combmatgrq%1 with itself and is a linear metric on

R?. Clearly d ((1, 0) ((0, 1), (0,0) =1
— = 1.
andd((2 2) 0,0))

Hence (R?, d 'E strictly convex.

Each of the following two examples shows that if (X, d) has P.S.C.
then it need not have S.C. In the first example the balls are
convex whereas in the second example all the balls are not
convex.

Example 2.2.3 [9] Let f: R* > R" be defined by

£ 1) o JEOCREE
(%{1 if t>1}
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and d be the linear metric on R defined by d (0, t) = { (\t\) for all

teR. Then (R, d) has (B.C.) and P.S.C. but not S.C.
Example 2.2.4 [9] Let f: R* > R* defined by
” {1 b | f OSts1}
S} it
and d be the linear metric on R defined by d (0, t) = f (|t|) for all
t eR. Then (R, d) has P.S.C. but neither (B.C.) n nor (B).
Now we give two more examples g1v1ng§ elation between
C., (A) and (B).

Example 2.2.5 [8] Define f: R* >R’ defmed by

; 0<t<1

f( ,1f =St 2

L
>

and d: RxR &R,* by

d (%, y) =¥(|x-yl).
Then (R, d) is a totally complete Linear metric space such that all
of its balls are convex but it is not strictly convex. Further it
satisfies (A) but not (B) even though d is unbounded.

Example 2.2.6 [8] Define f: R* > R" by

ft) = o

1+t
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and d:RxR - R*

by dix,y) = f(Ix-yl).

Then (R, d) is a bounded strictly convex linear metric space
satisfying (A) but not (B).

Next, we show that a totally complete linear metric space
satisfies (A) and totally complete linear metric space, in presence
of S.C., satisfies (B). This is the essence of our next.theorem.
Theorem 2.2.1 [8] The following hold: ‘(&

(i) A totally complete linear metric atisfies (A).
(i) A totally complete strictly convex linear metric space
satisfies (B). Q'
Proof (i) Let (X, d) be a tota@g%nplete linear metric space. Let r>
O and ¢ > O suppose th oes not exist 6 >0
such that
B[O, + %&;r] + B[O, £] .

Then there exists z, € X such that
1
d(z,, 0)>r+ —and
n

z, ¢ B[O, ] + B[O, ¢]

so that

d(z, , 0) >r
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Since (X, d) is totally complete, there exists a convergent
subsequence {Z_ } of {z,} with limit, say, z. Then d (z, 0) = r and
hence z is an interior point of
B[O, 7] + B[O, £]
so that it contains infinitely many z, which is a contradiction.
(ii)) Let (X, d) be a totally complete, strictly convex linear metric
space. Let r > 0 and ¢ >0.
Suppose there does not exist §>0 such that Zb;r -4
implies C\DQ%
sup{d(x+2,0),d 2z 0)< ¢} >r.

Then there exists x, e X Such th{%.

.

d(x,,0)> 7~ &

and
sup {d 4%,9) :d(z,0)< e} <.
Since (X, d) is totally complete, there exists a convergent
subsequence {x,} of {x,} with limit, say, x. Then d( %, 0) =r and
sup{d(x +2,0):d (z,0) <&} < T
Choose t> 0 such thatd (t x, O) < ¢. Then
d(1+t)x,0)<r.

But, since (X, d) is strictly convex,
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r=d(x,0)<d((1l+1t)x,0)
(from corollary 3.1 of the third chapter), which is a contradiction.
Then following theorem gives the structure of line segments
in strictly convex linear metric spaces.
Theorem 2.2.2 [9] Let (X, d) be strictly convex and
r >0. Suppose S [0, r] 0 and y, z are distinct points of B [ O, r |.
Then

. g
E={teR:ty+(1-t)ze B[O,r]}
>

is a compact convex subset of R. \Q

Proof The convexity of E follows from that of B [0, 1]

Clearly E is closed. Let v = (y — %Suppose E is not bounded
above. Then [0,0)c E SO thétJQJ

z+tv e BJO, r] for alN\f'e R"

for any, se (0, 1) and t e R"we have
&
Sz +tv @ £v)+ (1-s)0 € B[O, r]
S

Since BJ[O, r] is convex, tv € B[ o, r| for any ¢t R* and hence for
any teR. Let x e S[0,r] (such a point exists by hypothesis). For

any x < (0, 1) and t eR we have

sx+ tv= sx+ (1-s) (%)V eB [0, 1]
-s

Hence x + tv eB [0,r] for all t e R.
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In particular
x+v, x-veB][O,T1]
Also

Xtv £ X-V

and x=%(x+v)+%(x—v)

so from the strict convexity x B (0, r), which is a

contradiction. Therefore E is bounded above. Simi %y it can be
shown that E is bounded below. This complg%gt e proof.
Note: Example 2.2.3 shows that the Q%Qe result need not be
valid if 'strict convexity' is replaced by ball convexity.
Corollary 2.2.1 [9] Let (X ,@%e strictly convex and r > O.
Suppose xe X, S [0, r@@md y, z are distinct points of BJ[x, r].
Then

E={teR:ty+(—1t)z e B[x,r]}

{&

is a compac&wex set.

Proof Since we can write E as
E={teR:t{y-x)+(1-1) (z- x) € BO,r]}
the result follows from Theorem. 2.2.1
Corollary 2.2.2 [9] Let (x, d) be a strictly convex linear metric
space. Then sup {d (t X, 0): teR} is invariant on X\{0}. In fact,

sup{d (t x, z): teR}
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is invariant on (x\{0}) x X .

Proof: Let u, ve X and x, y € X\ {0} let
r=sup{d (t X, u) : teR}

and s=sup{d(ty, v):teR}

Suppose r < s then there exists aeR such that
dlay,v) =r

Hence S [0, r] #@.Also O and x are distinct points o‘tg [u, r] and

{teR:tx + (1-t) O BJu, r]} =R &

which is false in view of corollary 2.2.1. w} « s similarly, it

can be shown s« r. Here r = s.
In Corollary 2.2.2, we have%,own that in the presence of

strict convexity, Q‘JQ

Q
sup {d(tx, 0) : te

is invariant on X\{0}.

In a %&y’ convex linear metric space, every half-ray
emanating from the centre of a ball, passes through its surface,
provided, of course, the surface is non-empty. This is the essence
of
Corollary 2.2.3 [9] Let (x, d) be strictly convex, r > O

and s[ O,r] .@. Suppose X,y exandy # 0. Then

x+ay € S[x, 1]
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for some « e R*
Proof Let z € S[O,r|. Then, from corollary 3.1 (Chapter III)
follows that
sup {d(tz, 0)/ teR} > r.
Hence, by Corollary 2.2.3,
sup {d(ty, 0)/ teER} > r.

Consequently,

&
ds a € R’

S
such that ay €S [0, 1] C\DQ%

so that
X+ ay €S [x, 1]. Q'
The above two results give impression that strictly convex

liear metric spaces behwv gﬂ normed linear spaces.

The following two éxamples show that mere ball convexity
does not guarantef the invariance of

sup {d@O) :te R} on X\ {0}

In the first example we follow the technique used in the
proof of the following result of Walter Rudin (Theorem 1.24 of [7]).
"If X is a topological vector space with a countable local base,
then there is a metric d on X such that

(a) dis compatiable with the topology of X

(b) The open balls centred at O are balanced, and
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(c) disinvarianti.e
dx+z,y+tz)=d(x,y)forx,y,z€X.
If, in addition, X is locally convex, then d can be choosen so
as to satisfy (a), (b), (c) and also
(d) all open balls are convex."
Example 2.2.7 [9]

Let vV, = {x,y)eR* : |y| < —} and

V.={x y)eR®: (x* +y°)/? < — }forn=2, 3. &@
Then C\DQ

{V, . 'S

is a balanced convex local base a@qe origin for the Euclidean

>

topology on R*. Also &

V..tV cV for n=12,..

n+1

Let D t@éet of rational numbers of the form

where each of the digits C,(r)is O or 1 and only finitely many are 1.

Define

R? if r>1
(00]
Alr) =
(r) > C,("V, if re€D.
n =ml
Also define
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f(x) = inf {n : x € A(r)} for x € R®

and d (X7 Y) =T (X _Y) ’ (XERQ, yERQ)
Then (R?, d) is a linear metric space, all of whose balls are

convex. Further

sup {d (t(0, 1), (0, 0) ) : teR} =%

and
sup {d (t(1, O0), (0, 0) ) : teR} =1

The metric d in this example can be explicitly expressed as

Q
follows:
b
Let (X, y) € R*>. Then \Q

eyl Jeul<

i 1
d(x, y), (0, 0) ) = if ”(x’é)@d”ynﬁ |
yl i QJ 2£|y|g1
1 % ly| =1

1/2

N |+~

where |(x, y)| = x* +y7)

L 2

is the Euclic@ norm. Here we have

{(x,y) e R?: ||x,y|| =r}if O<r<%
1 150 1
{y)eR: |xy 25,”14”55} 1f1”=§
S[0,r] = )
{c,y) eR*: |y|=r} if§<r<1
2 1
{xyeR: [y 21 ﬁ§<r=1

Example 2.2.8 [9] Define d on R? as follows:
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. il
eyl i eyl <5
2 2 2

1

if > —

I ity 23

where
e, | = * + y°) "

is the Euclidean norm. Then (R?, d) is a linear metric space

with ball convexity. The metric nature of d follo@wdiately, if

we observe that @
y| <d (%), (0,0) <[x,y] CD

for all (x, y) € R® Q'

In example 2.2.4, % “superemum’' is finite in each

direction whereas, her@,:superemum' is finite in one

direction and infinite in another. Infact,

S@&’t, 0),(0,0)):te R = L

P

and

sup{d ((0, t), (0,0) :teR} =00

Now we shall show that closed balls in a strictly convex
linear metric space with non-empty surface are compact if the
space is finite dimensional. We shall be using the following result

of Walter Rudin (Theorem 1.28 (b) [ii]. "If {xn} is a sequence in a
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metrizable topological vector space X and if x, >0 as n—wo,
then there are positive scalars 7, such that
7.~ ooand y.x. —0

Theorem 2.2.3 [9] Let (X, d) be strictly convex linear metric

space and finite dimensional. If S {0, r] # @ then B [0, r] is compact.

Proof Since (X, d) is finite dimensional linear metric space, it is

normable . Let |[[| be a norm compatible with the to@on X. Since B

[o,r] is closed, it is sufficient to show that it is norm&gunded. Suppose that

ANg

B [0, r] is unbounded in the norm. Then th exists a sequence {tn} of

positive scalars and a sequence {xn} of vectors of unit norm such that
t, > as n —»o andtx, € BéjQ;) for all n. Since (X |[|) is a finite

dimensional normed lineQS; e, {xn} has a convergent subsequence. We

may suppose that {xn} is convergent with limit, say xo. Then (]|x,|)=1. Since

the norm top@ﬁd d-topology are the same,

d(x,—%,,0) >0as n—oo

Hence by the above theorem, there exists a sequence {on} of
positive scalars such that

a, >» and d(e,(x, - x,),0) > 0asn—>wx
Let g,=min {t , o} Then

p, o as n — oo,
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(1)

For a positive integer m let € > 0. There exists n > m such
that

f. > B, and d (B, (x,—%), 0) < &.
Now
d (ﬂmx()? 0 ) d (ﬁn Xo» O)

d (ﬂn(xn _xo):o) iy d(ﬂn Xns O)
e+d(t, x, 0)

g tr.

IAN N A

This being true for each € > 0, we have fb,
d (ﬂm XO’O) =4 (§®
so that g x, € B[0,r] for each m. Since C\DQ

B, - o andB [0, r] is convex, it follows that
(1) sup{d(tX,,0) :teR};@b'
But, since S[0,r] # @@Xists y € S[0,r] and by theorem 3.1,

it follows that

(2) sup { e{X,O):teR}w
and (2) contradict each other in view of corollary 2.2.2.

Hence B [0, r] is compact.

Next theorem shows that a strictly convex finite dimensional
linear metric space in the presence of an unbounded metric is

totally complete, a notion introduced in [1]
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Lemma 2.2.3 [9] A strictly convex finite dimensional linear
metric space with an unbounded metric is totally complete.

Proof : Let (X, d) be strictly convex, finite dimensional linear
metric space and d be unbounded. Let r > 0. Since d is
unbounded, there exists y € X such that

d (y, 0) > r.

Hence by the continuity, there exists te | 0, 1 [such that d (t y, O)
= r so that S [0, r] # @. Therefore by Theore‘@s, B [0, 1] is

compact. Hence, every closed ball and &\Sé‘@e every d-bounded

closed set is compact.

In a linear metric space if t@metric is additive along a half-

ray emanating from the origi en it is a norm along the line
determined by the half—ﬁgmore generally, we have the following
result, the proof of whiclhivis immediate.

Lemma 2.2.4 [9 S}lppOSf: x, ,Y,€ X are such that
(1) d (X& d(x,2) +d(zy) Ve [x,]
whenever x, ye [x,,Y,]- Then

d (tx,, ty,) =t d(x,,y,)for all t € [0, 1].

The above result need not be true, even when (X, d) is

strictly convex if (1) is replaced by

d(x,, Yo) = d(%,,2)+d(z,Y,) VZ € (X Y,)
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as the following example shows:

Example 2.2.9 {15] Define f: R* > R* by

Yo oS
3 4
2 1 ) 1 3
f(t) = e t+g if ZStSZThen (R, d), where
gt+l if t>1
3 3

d(x,y) =f(jx-y|)vx, y €R,

is a strictly convex linear metric space. Clearly &
d(©,1)=d(0,t)+d(t, 1) vte[O0,1] fés
but C\DQ

d(0,t)=td (0,1) vt e[0, 1]
is not true. @'

The following exam@dws that the distance between two points
can be the sum of their distances from an intermediate point but at the
same time it may not be so for every intermediate point, even in a strictly

convex linear @% $pace.

Example 2.2.10 [9] Define f: R* > R* by

RNE 0<t <1

f(t) = {1+t

t if t=>1
Then (R, d), where
d(X’ Y) B f(lx_yl v X,YER,

is a strictly convex linear metric space. We have

d@3,4)+d (4,5 =d(3,5) =#d (3, %)+d(%,5)
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Now we show that strict convexity is weaker than property (P) but
stronger than the property (B). This is the essence of our next

theorem.

Theorem 2.2.4 [4] Let (X, d) be a linear metric space, we have:

i) If (X, d) has property (P) then it is strictly convex.
(i) If (X, d) is strictly convex then it has property (Pi).

Proof (1) Suppose (X, d) is not strictly convex. Then by lemma

3.2 ([3]) there exists an r > O and distinct points x and y such

that (b'
dx,0=d(y,0) =r (8'(@
o

consider the compact line segment [x, y]. This set is proximinal

letf: E > [x,y] be the neares;@c mapping then

f (0) = x, f(0) —y.$%r
d(x,y)=d(f(0),f(0))=d(0,0=0
[By propert}%)@nd so x =y, a contradiction.
(x

i) Ifd z, 0) <d (x, 0) and
2d (y,X) <d (x,0)—-d (x+ z, 0)

and B[O, r] N]x,y[= 0.

then
d(y+z 0 <d(x+z 0)+d(y,x)<d(y,0)
Thus property (P1) is satisfied if
b=[d(x,0)-d(x+z 0)]/2and C = 1.

Ifd((x+z 0)=dzx,0)
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then by the strict convexity,

z - XxX+tz+x
dx + .0 =d(=——,0<d(x,0)
and so property (P,) is satisfied if

b=[dix 0) =dx+ 2,0)1/2 andC=% as

d(y+§,0) < dy,x) +d(x+ g,O)

dy,x)+d(x,0)-2b &
X (x, 0) -b @

Theorem 2.2.5 [1] A complete convex set K in a linear metric

space (X, d) satisfying the pro@ (P) is Chebyshev.

IA

IA

d (v, O0).

Proof : Let geX an QJ
r=inf{d (x, g : x eK}
By definitio Qﬂmum there is a sequence <x, > in K such that
lim. d (x,, g)=inf{d (x, g: x €K}
By property (P) we have <x, > in K. K being complete,
<x, >—>xekK

and consequently
d (x*, g)=r.
Alsod (x*, g) =d (x*,x, ) +d (X, , g

implies
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d((x*,g)<r
Hence
dx*g)=r
Now, if possible
X;, X;, eK
be such that
d(x, g=d(x, g=r.

Consider the sequence < X, > defined as &

{Xl if n is odd
X, =

x, if n is even. @

Thenlim d (x,g) =d (X;, g) =d (X,,8) =1 g?{d(x, g) :x e K}.

By property (P), <X, > has a Cauchy sequence < x, > and therefore for
a given ¢ > 0, there exists a posi

integer N such that QJ
d(x, ,x, ) <& forall QZ N,

ie. dx;, x,)<¢

¢ being arbi@ X=X,
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