
 

 e-learning Mathematics  
 

     MODULE* – 7                                                             

SRICTLY CONVEX LINER METRIC SPACES AND  

THEIR GENERALIZATION 

 

  INTRODUCTION 

 The present module  is a study of strictly convex linear 

metric spaces. The notion of strict convexity in normed linear 

spaces was introduced independently by J.A. Clarkson and M.G. 

krein in 1935 ( [5]). Different mathematicians calls strictly convex 

normed spaces by different names such as strictly normalized , 

rotund and strongly convex ( [5]). Ahuja , Naran and Trehan ([1]) 

extended the notion of strict convexity to linear metric spaces in 

1977 . Later the study was pursued by K.P.R. Sastry, S.V.R. 

Naidu, T.D. Narang, concept or strict convexity to linear metric 

spaces, whatever literature was available, the uniquencess of best 

approximation was established only in normed linear spaces and 

not in linear metric spaces. This motivated the extension of the 

notion of strict convexity to linear metric spaces. Various forms of 

strict convexity and its relation with other spaces have been 

discussed by sastry and naidu ([9]) and ([10]). Some 

characterizations of strictly convex linear metric spaces were 

given by Naran in [3] and [4]. Throughout this module , the 

underlying field will be either the field of real numbers or the field 

of complex numbers.  

      This module 'Strictly Convex Linear Metric Spaces and their 

Generalizations' has been divided into two sections. The first 

section deals with the definition and some examples of strictly 
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convex linear metric spaces. In this section, we also prove some 

properties of linear metric spaces. In the second section, we give 

specail linear metric spaces i.e. linear metric spaces with 

properties : A, B, C, S.C., P.S.C., B.C., P and 1P   To star with, we 

set up some notations and terminology to be used in this Module 

7 and Module 8.                            

The symbol ∈ will stand for belongs to, iff for if and only if, 

s.c. for strictly convex, n.1.s. for normed linear space, dim A for 

dimenstion of a set A, f.d. for finite dimensional, inf. for 

inrimum, sup. for supremum, min. for minimum, max. for 

maximum, int. for interior, nR  for the n-dimensional Euclidean 

space, nC for n-dimensional unitary space, R   for the set of non-

negative real numbers. ∅ for the empty set, conv (A) for the 

convex hull of a set A, Cl A for the closure of a set A, ∂A denotes 

the topological boundary of A, E/G for the quotient space of E by 

G, E\G for the complement of a set G in E, [x] for the subspace 

generated by an element X, R[f (x)] for the real part of f(x),  

Im[f(x)] for the imaginary part of f(x), d (x, G) for the distance of x 

from a set G, line segment [x, y] for the set {αx + (1-α)y, 0 ≤ α ≤ 

1}, ] x, y [ for the open line segment {αx + (1-α)y, 0 < α < 1},  xn⇀ x 

for xn converges to x weakly. In a linear metric space (X, d), B [0, r] = {x ϵ 

X, d (0, x) ≤ r} will stand for the closed ball with centre 0 and radius r, B 

(0, r) =   {x ϵ X, d (0, x) < r} will stand for the open ball with centre 0 and 

radius r and the functional d (0, ) = 1 1 defined on X is called quasinorm 

of X .  

 Other notations will be given whenever these occur. The 

numbers within square barackets indicate references cited at the 

end of the Mod. 
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1. PRELIMANARIES  

Definition 1.1 A subset A or a linear space X is said to be 

convex if with any two points x, y of A, it contains the line 

segment joining two points i.e. x, y ϵ A, ] 0,1  [imply αx + (1- α)y ϵ 

A. It is said to be mid-point convex  if 
1 1

x +   
2 2

y ϵ A for any two points 

x, y ϵ A. 

Definition 1.2 If A is any set in a linear space X then 

intersection of all the convex sets containing A is called the 

convex hull  of A. 

Definition 1.3 A set V in a linear space X is said to be linear 

manifold if it is of form V = x0 + G = { 
0x  + g : g ϵ G}, where 

0x ϵ X 

and G is a linear subspace  of X i.e. a translate of a linear 

subspace of X is called a linear manifold. 

 A closed linear manifold H⊂X is called a hyperplane if there 

exists no closed linear manifold 1  H X  such that 1H H and H≠ X 

i.e. H is the maximal closed linear manifold in X. 

Definition 1.4 A set of the form {x ϵ L, r (x)≥ ∝} where L is an n-

dimensional subspace of a  linear space X (n, a natural number, 

1 ≤ n ≤ dim X ≤ ∞) f is a linear functional on L, and  α is a real 

number, is called an (closed) n-dimensional half plane.  

Definition 1.5 A subset A of a linear space X is called 

symmetric if {-x : x ϵ A} = A. 

Definition 1.6 A set X with a family β of subsets of X is called a 

topological space if β satisfies the following conditions: 

(a) The empty set ∅ and the whole set X belong to β. 

(b) The union of any number or mebers of β is again a member 

of β. 
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(c) The intersection of any finite number of members of β is again a 

member of β. 

The family β is called a topology  for X, and the members of β are  

called open sets of X in this topology. 

Definition 1.7 A vector space X over a field K, together with a 

Housdorff topology β is called a topological linear space  if the vector 

space operations (x, y) → x + y from X x X into X and (α , x) → α x from K x X 

into X are continous. 

Definition 1.8 A topological linear space is said to be locally 

convex  if it has a base of convex neighbourhoods. 

Definition 1.9 A linear space X is called a linear metric space  

if it is a topological linear space with topology derived from an 

invariant metric i.e. 1 2 1 2( , ) ( , )d x y x y d x x    for every choice of 1 2,  x x

and y in X.   

Equivalently, a metric space (X, d) is said to be a linear metric 

space if  

(i) It is a linear space. 

(ii) Addition and scalar multiplications are continuous i.e. for 

< x  >  x, < y  >  y, <  >  ,n n n     

< x +y  >  x+ y and  x  >  x, andn n n n    

(iii) d is translation invariant i.e. 1 2 1 2d (x y, x + y) = d(x ,x )  for 

every choice of 1 2,  ,x x y ,  in X. 

Definition 1.10 A linear metric space (X, d) is said to be 

bounded liner metric space  if the metric d is bounded i.e. there 

exists r > 0 such that 

 r=sup d (x, 0). 

    x ε X 
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Definition 1.11 A linear metric space (X, d) is said to be 

strongly locally convex  if each open sphere in it is a convex 

set. 

Definition 1.12 A linear space X is said to be normed linear 

space if to each X ϵ X, there is assigned a unique real number, 

which we denote by x , satisfying the following properties: 

(i) x  ≥ 0 and x  = 0 iff x = 0 

(ii) x + y   x  + y  

(iii)  x  =  + x  , y ϵ X and for all scalars  . 

Definition 1.13 A normed linear space (X,   ) is said to be 

strictly convex  if for any two points x and y or X with 

x+y
x  = y =1,   < 1 unless x = y.

2
 

Definition 1.14 The conjugate space or  dual space  of a n.1.s. 

X, denoted by X  , is the space of all continuous linear 

functionals on X with the usual linear space operations and the 

norm  defined by f  = sup  f(x)
 

         
x |

 

 
x X  

Definition 1.15  A normed linear space X is said to be reflexive  

if X = X, where X stands for the second conjugate space  of X. 

Definition 1.16  A n. 1. s. X is said to be smooth if every 

element x of X with x  = 1 has a unique support hyperplane to 

the open unit ball B(0, 1) = { x : x ϵ E, x  < 1}.  

Definition 1.17   A normed linear space X is said to be strictly 

normed  if the relation x + y  = x  + y , x, y  x\{0} implies 
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the existence of a number C > 0 such that y = C x Such a norm is 

called a strict norm. 

Definition 1.18   An element x of a n.1,s. X is said to be 

orthogonal to an element y of X, x⊥y, if x+ y x   for every 

scalar α. x is said to be orthogonal to a subset  G of X, x⊥G, if 

x⊥y for all y ϵ G. 

Definition 1.19  Let X be a linear space.  A mapping 

 <⋆,   ⋆ > : X x X ⟶ k,     

the field or scalars is said to be an inner product  on X if  the 

following properties hold for all x, y,  z ϵ X and for all scalars α, β 

ϵ K 

(i)  x, x >  0 for all x X    

(ii) < x, y > = < y, x > where < y, x > denotes the complex 

conjugate of < y, x > 

(iii) < x + y, z > =  <x, z > +  <y, z>.     

The pair (X ,   ,   ) is called an inner product space. 

Definition 1.20  A complete inner product space is called a 

Hilbert space. 

Definition 1.21  Let (X,  ) and ( Y,  ) be two topological 

spaces. Then a mapping f  : X   Y is called a homeomorphism  

if  

(i) f  is one-one 

(ii) f  is onto 

(iii) f  is continous 

(iv) 1f   is continous 

Definition 1.22 If E and F are two normed liner spaces over 

the same field K then a mapping T : E      > F is called a linear 

transformation  if it satisfies the following properties: 
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(i) T (x + y) = Tx + Ty 

(ii) T (α x) = α T (x) for any x, y ϵ E and for all α ϵ K. 

Linear transformation T is said to be bounded if 

T  = sup  T (x) is finite
 

         
1x 

 

        
x E  
 

Definition 1.23 A subset A of a metric space (X, d) is said to be 

metrically bounded or d-bounded  if sup {d (x, y), x, yϵ A } is 

finite. 

Definition 1.24 Let G be a subset of a metric space (X, d) and x 

be an element of X. An element 0g 𝛜 G is called a best-

approximation or a nearest point  to x in G if 

 
0

inf
d(x, g ) = d (x, G)=  ( ,

g G
d x g


) 

The set of all elements 
0g  ϵ G is denoted by ( )GL x   

 i.e. ( )GL x = { 0g  ϵ G, d (x, 0g ) = d (x, G) } 

G is said to be proximinal  if LG (x) is non-empty for every x ϵ X. 

G is said to be semi-Chebyshev if ( )GL x  is atmost singleton for 

every x ϵ X and G is aid to be Chebyshev  or uiquely proximinal  

if ( )GL x  is exactly singleton for every x ϵ X . 

 . 

2.1  SOME BASIC PROPERTIES OF STRICTLY CONVEX 

 LINEAR METRIC SPACES 

 We begin with the notion of strictly convex linear metric 

space as introduced by Ahuja, Narang and Trehan in [1].  
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Definition 2.1.1 [1] A linear metric space (X, d) is said to be 

strictly convex   if d(x,0) r,d(y,0) r   imply 
x+y

d ( , 0) < r
2

 unless 

x = y, x, yϵ X and r is any positive real number. 

 Next we give an example of a strictly convex linear metric 

space. 

Example 2.1.1 [1] The set R of real numbers with metric d 

defined by d (x, y) = 
x-y

1+ x-y
 is a strictly convex linear metric 

space. This can be seen as follows: 

 Lex x and y be two distinct points of R with d (x, 0) ≤ r, d (y, 

0) ≤ r. These give 

 
r r

x   ,  y   
1-r 1-r

 
 

Strict convexity of | | implies 
x + y r

 < 
2 1-r

, which in turn implies  

x + y
d ( , 0 )

2
 < r 

Remark 2.1.1 [1] In fact we can say a little more viz. if (X,‖ ‖) is a 

strictly convex normed linear space then the linear metric space 

(X, d) where d is defined as
x - y

d(x,y) = 
1+ x - y

 

is strictly convex. 

 The following example shows that even a finite dmensional 

liner metric space need not be strictly convex. 

Example 2.1.1 [1] Consider 2( , )R d  where d is defined as  

 
1 1 2 2

1 2 1 2

d(x,y) = max { x -y , x -y }

x = (x , x ),  y = (y ,y ).
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Let x = (1, 1) and y = (1, 0) then d (x , 0 ) = 1, d (y, 0) = 1 and also 

d ( ,0) 1
2

x y
 . Therefore 2( , )R d is not strictly convex. 

 The following theorem tells that certain type of linear metric 

spaces can never be strictly convex. 

Theorem 2.1.1 [8] A non-zero bounded linear metric space in 

which the metric attains its superemum is not strictly convex. 

Proof : Let (X,d) be a non-zero bounded linear metric space such 

that d attains its superemum, say r. Then r > 0 and there exists z 

ϵ X such that d (z, 0) = r. Take x = 
z

2
 and y = 

3

2
 z. Then d (x, 0) ≤ 

r, d (y, 0) ≤ r and x ≠ y, but  
x + y

d( ( , 0)=d (z, 0) = r
2

. Hence (X, 

d) is not strictly convex. 

 It is well known (see [6]) that Every Convex Proximinal set in a 

Strictly Convex Normed Linear Space is Chebyshev. We show below 

that a similar result holds in a strictly convex linear metric space.  

Theorem 2.1.2 [1] A convex proximinal set in a strictly convex linear 

metric space is Chebyshev. 

Proof : Let G be a convex proximinal set in a strictly convex linear 

metric space (X, d) and let p be any arbitary point on X. Since G is 

proximinal, there exists 
*

1g G  such that d (p, 
*

1g ) = d (p, G)  r (say). 

 Let, if possible, there exists 
*

2g G  such that 
*

2d (p, g ) = r.  

Invariance of the metric d implies that 

 d (p-
*

1g , 0) = d (p - 
*

2g , 0) = r.  

Since X is strictly convex, we have 
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* *

1 2(p - g ) + (p - g )
d ,0  < r

2

 
 
 

 unless 
* *

1 2p - g  = p - g  

i.e. 
* *

1 2 g  +  g
d p,  < r

2

 
 
 

 unless 
*

1g =
*

2g . Since 
* *

1 2 g  +  g

2
ϵ G, definition 

of r implies that 
*

1g =
*

2g . Hence G is Chebyshev. 

 Now, we give a lemma to be used in Theorem 2.1.3 which shows 

that strictly convex linear metric spaces are strongly locally convex – a 

notion introcduced by T.D. Narang in [2].  

Lemma 2.1.1 [8] Let (X, T) be a topological vector space and S be a 

non-empty closed subset of X such that x, y ϵ ∂S (boundry of S) and x 

≠ y imply (x, y) ∩ S=∅. Then S is conve. 

Proof: Suppose S is not convex. Then there exist x, y ∈ S, x ≠ y 

such that (x, y) ∩ S =∅ (S  is the compement of S in X). 

  Let A = { t∈ (0, 1) : tx + (1-t) y ∈ S  } Then A is anon-empty 

subset of R. Let B be a component of A. Then there exist  α, β ∈ R such 

that α  <  β = (α,  β). write  

 1 2z  = x + (1- ) y and z  = β x + (1-β) y   

Then, clearly 1z , 2z  are distinct points of ∂S- and 1 2( , )z z  ∩ S =∅ which 

contrdicts the hypothesis. 

Theorem 2.1.3 [8]  In a strictly convex linear metric space, the 

balls are convex. 

Proof  From lemma 2.1.1, it is clear that closed balls with centre 

at the origin and hence the open balls with centre at the origin 

are convex. Since every ball is a translate of a ball with centre at 

the origin, the result is immediate. 

2.2 SOME SPECIAL LINEAR METRIC SPACES 

 In this section, we whall discuss some special linear metric 

spaces i.e. linear metric spaces with properties A, B, C, S.C.,        



 

 e-learning Mathematics  
 

P.S.C., B.C., P and 1P   and the relationships of A, B, C, P.S.C., 

B.C., P and 1P  with S.C. 

 We say that a linear metric space (X, d) has the   

Property :- 

A : Given r > 0, ε > 0 there exists δ> 0 such that 

 B [0, r + δ] ⊂ B [0, r] + B [ 0, ε] 

B :  Given r > 0, ε > 0 there exists δ> 0 such that   

 d (x, 0) > r-δ   sup {d (x +z, 0) : d (z, 0) <ε} > r. 

C: Give r > 0, ε > 0 there exists δ > 0 such that r < d (x, 0) < r +δ ⇒ 

there exists y, z such that d (y, 0) = r, d (z, 0) < ε and x = y + z. 

S.C.   r > 0 , x ≠ y, d (x, 0 ) ≤ r   
x + y

d( , 0)
2

 < r. 

P.S.C. x ≠ 0, y ≠ 0, d (x + y, 0) = d (x, 0) + d (y, 0)  ⇒ y= tx for some t > 0. 

P. A linear metric space (X, d) is said to have property (P) if the 

nearest point mapping shrinks distances whenever it exists. 

B.C. r ≥ 0, d (x, 0) = d (y, 0) = r   
x + y

d( , 0)
2

 ≤ r. 

P1 A linear metric space (X, d) is said to have property ( 1P ) if for 

every pair of elements x, z ∈ X such that d (x + z, 0) ≤ d (x, 0) there 

exist constants b = b (x, z) > 0, C = C (x, z) > G such that d (y + C z, 0) ≤ d 

(y, 0) for d (y , x) ≤ b. 

Lemma 2.2.1 [9] Let f : R R  be strictly increasing function such 

that (X, f d ) is a linear meric space. Then (X, d) has S.C.   (X, 

f d ) has S.C. 

Proof    Let r > 0 and ( f d ) (x, 0) ≤ r, ( f d ) (y, 0) ≤ r  
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i.e. f [d (x, 0)] ≤ r, f [d (y, 0)]≤ r. 

We may assume that there exists z∈X such that f [d (z, 0)]≥ r. Since   

f (d(t z, 0) ) is a continuous function of t on R and hence for some         

t ∈ ] 0, 1 [  , f (d (tz, 0) ) = r so that 1( )f r  exists. 

Clearly 1( )f r  > 0 

 d (x, 0) ≤ 1f   (r), d (y, 0) ≤ 1f   (r) 

and so by strict convexity of d, 
x + y

d( , 0)
2

< 1f   (r)   

f [
x + y

d( , 0)
2

] < r as f is strictly increasing 

 Since 1f   is strictly increasing and d = 1f   ( f d ), the other 

implication follows from the first. 

 As above, the following lemma can be easily established. 

Lemma 2.2.2 [9]  Let f : R R    be a strictly increasing function such 

that  

(i) f (s + t) ≤ f (s) + f (t) for all s, t ∈ R and 

(ii) (X, f d ) is a linear metric space. Then (X, d) has P.S.C. ==> 

(X, f d ) has P.S.C. 

Proof : Let ( f d ) (x + y, 0) = ( f d ) (x, 0) + ( f d ) (y, 0) 

  i.e. f [d ( x + y, 0)] = f [d ( x, 0)] + f d (y, 0)] 

Let d (x, 0) = s and d (y, 0) =t 

Now f (s + t) ≤ r (s) + f (t) 

       f (d (x, 0) + d (y, 0))  ≤  f (d(x, 0)) + f (d (y, 0)) 

     = ( f d ) (x + y, 0) 

     = f (d (x + y, 0)) 

     ≤ f (d (x, 0) + d (y, 0) ) 

 f (d (x, 0) + d (y, 0)) = f (d (x + y, 0) ) 

Now since r is a strictly increasing function, we have 

 d (x, 0) + d (y, 0) = d x + y, 0) 

which implies that y = tx for some t > 0 and so (X, f d ) has P.S.C. 
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 Suppose f : R R   is such that (X, f d ) is a linear metric space. 

Then f does not satisfy that condition f (s + t) < f (s) + f (t) for all s, t ∈

R   as is evident from the following example: 

Example 2.2 1 [9] The function d defined by d (x, y) = 
1/2

x-y  is a 

linear lmeric on R. If we define  f : R R    by f (t) = 2t , then f d  is the 

usual metric on R. Clearly f does not satisfy the condition. 

 f (s + t) ≤ f (s) + f (t) for all s, t ∈R   

 Given two linear metrics on alinear space X, their Euclidean 

combination on X x X is a linear metric while the Euclidean 

combination of two strictly convex norms on X is strictly convex. On X 

x X, the same need not be true in the case of linear metrics as the 

following example shows.  

Example 2.2.2. [9] Consider the strictly convex linear metric space (R, 

1d ), where 1d (s. t) = 
1/2

s-t  for all s,  t ∈R. Then 

 
1/2

1 1 2 2 1 2 1 2(( , ),( , )) [ ]d x y x y x x y y     

is the Euclidean combination of d1 with itself and is a linear metric on

2R . Clearly d ((1, 0) , (0, 0)) = d ((0, 1), (0, 0)) = 1  

and 
1 1

d ( ( , ), (0, 0) ) = 1
2 2

. 

Hence ( 2R , d ) is not strictly convex. 

Each of the following two examples shows that if (X, d) has P.S.C. 

then it need not have S.C. In the first example the balls are 

convex whereas in the second example all the balls are not 

convex. 

Example 2.2.3 [9] Let f : R R    be defined by 

 
0 1

f (t) =         
1 1

t if t

if t

  
 

 
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and d be the linear metric on R defined by d (0, t) = f ( t ) for all 

t∈R. Then (R, d) has (B.C.) and P.S.C. but not S.C. 

Example 2.2.4 [9] Let f : R R     defined by 

 
t

if 0 t 1
f (t) =         1 1

if t 1(1+ )
2 t

 
  

 
 

 

 

and d be the linear metric on R defined by d (0, t) = f ( t )  for all 

 t ∈ R. Then (R, d) has P.S.C. but neither (B.C.) nor (A) nor (B). 

 Now we give two more examples giving the relation between 

S.C., (A) and (B). 

Example 2.2.5 [8] Define f : R R   defined  by  

 ,      0 1

f (t) = 1 ,  if    1 2  

,  if   2
2

t if t

t

t
t

 
  
 

  
 
 
 

 

and  d: R x R   R   by 

 d (x, y) = f (|x- y|). 

Then (R, d) is a totally complete Linear metric space such that all 

of its balls are convex but it is not strictly convex. Further it 

satisfies (A) but not (B) even though d is unbounded. 

Example 2.2.6 [8] Define f : R R     by 

  f(t) = 
1

t

t
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and  d: R x R    R   

by  d(x, y) = f (|x – y|). 

Then (R, d) is a bounded strictly convex linear metric space 

satisfying (A) but not (B). 

 Next, we show that a totally complete linear metric space 

satisfies (A) and totally complete linear metric space, in presence 

of S.C., satisfies (B). This is the essence of our next theorem. 

Theorem 2.2.1 [8] The following hold: 

(i) A totally complete linear metric space satisfies (A). 

(ii) A totally complete strictly convex linear metric space 

satisfies (B). 

Proof (i) Let (X, d) be a totally complete linear metric space. Let r> 

0 and   > 0 suppose there does not exist   > 0 

such that 

 [0, ] [0, ] [0, ]B r B r B    . 

Then there exists nz X  such that 

 
1

( ,  0) > r + nd z
n

and 

  B[0, r] + B [0, ]nz   

so that 

 (  , 0) >r nd z  



 

 e-learning Mathematics  
 

Since (X, d) is totally complete, there exists a convergent 

subsequence { }
in

Z  of { }nz  with limit, say, z. Then d (z, 0) = r and 

hence z is an interior point of  

 [0, ] [0, ]B r B    

so that it contains infinitely many zn which is a contradiction. 

(ii)  Let (X, d) be a totally complete, strictly convex linear metric 

space. Let r > 0 and   >0. 

Suppose there does not exist 0   such that d (x, 0) > r -   

implies 

 sup {d (x + z, 0) , d  z, 0) <   } > r. 

Then there exists nx    X Such that 

 
1

( ,0)nd x r
n

   

and 

 sup {  ( ,0) : ( ,0) } .nd x z d z r    

 Since (X, d) is totally complete, there exists a convergent 

subsequence { }
in

x  of { }nx  with limit, say, x. Then d( x, 0) =r and 

  sup{ (x + z, 0) : d (z, 0) < }  rd  

Choose t> 0 such that d (t x , 0) <  . Then 

 d ((1 + t ) x, 0)  r. 

But, since (X, d) is strictly convex, 
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 r = d (x, 0) < d ((1 + t) x, 0) 

(from corollary 3.1 of the third chapter), which is a contradiction. 

 Then following theorem gives the structure of line segments 

in strictly convex linear metric spaces. 

Theorem 2.2.2 [9] Let (X, d) be strictly convex and  

r >0. Suppose S [0, r]  ∅ and y, z are distinct points of B [ 0, r ]. 

Then 

     { : (1 ) [0, ]}E t R ty t z B r  

is a compact convex subset of R. 

Proof The convexity of E follows from that of B [0, r] 

Clearly E is closed. Let v = ( y – z ). Suppose E is not bounded 

above. Then [0, ) E   so that 

    + v  B[0, r] for all t Rz t  

for any, + (0, 1) and t Rs   we have 

 ( ) (1 )0 [0, ]
t

sz tv s z v s B r
s

       

Since B[0, r] is convex,  tv   B[ o, r] for any t R   and hence for 

any t R . Let x [0, ]S r  (such a point exists by hypothesis). For 

any x  (0, 1) and t R we have  

 sx+ tv= sx+ (1-s) ( )v B [0, r]
1

t

s



 

Hence x + tv B [0,r] for all t R.   
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In particular 

 x + v,  x- v   B [ 0, r] 

Also 

 x+ v   x- v 

and  1 1
x= (x ) (x- )

2 2
v v   

so from the strict convexity x B (0, r),  which is a  

contradiction. Therefore E is bounded above. Similarly it can be 

shown that E is bounded below. This completes the proof. 

Note: Example 2.2.3 shows that the above result need not be 

valid if 'strict convexity' is replaced by ball convexity. 

Corollary 2.2.1 [9] Let (X , d) be strictly convex and r > 0. 

Suppose x X , S [0, r]  ∅ and y, z are distinct points of B[x, r]. 

Then 

     { : (1 ) [ , ]}E t R ty t z B x r  

is a compact convex set. 

Proof Since we can write E as 

 E  { : (y-x)+(1-t) (z- x) [0,r]}t R t B  , 

the result follows from Theorem. 2.2.1 

Corollary 2.2.2 [9] Let (x, d) be a strictly convex linear metric 

space. Then sup {d (t x, 0): tR} is invariant on X\{0}. In fact, 

 sup{d (t x, z): tR} 
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is invariant on (x\{0}) x X . 

Proof: Let u, v  and x, y \{0} letX X  

 r= sup {d (t x, u) : tR} 

and s = sup {d(t y, v) : tR} 

Suppose r < s then there exists aR such that 

 ( y, v) = rd   

Hence S [0, r]  ∅.Also 0 and x are distinct points of B [u, r] and 

 { : x + (1-t) 0 B[u, r]} = Rt R t   

which is false in view of corollary 2.2.1. Hence r   s similarly, it 

can be shown s  r. Here r = s. 

 In Corollary 2.2.2, we have shown that in the presence of 

strict convexity, 

 sup {d(t x, 0) : t R } 

is invariant on X\{0}. 

 In a strictly convex linear metric space, every half-ray 

emanating from the centre of a ball, passes through its surface, 

provided, of course, the surface is non-empty. This is the essence 

of 

Corollary 2.2.3 [9] Let (x, d) be strictly convex, r > 0  

and s[ 0,r] ∅. Suppose x, y x and y   0. Then 

 x+ y S[x, r]   
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for some R   

Proof  Let z  S[0,r]. Then, from corollary 3.1 (Chapter III) 

follows that 

 sup {d(tz, 0)/ t∈R} > r. 

Hence, by Corollary 2.2.3, 

 sup {d(ty, 0)/ t∈R} > r. 

Consequently, 

 s   ∈ R   

such that  y ∈S [0, r] 

so that 

 x +  y ∈S [x, r]. 

The above two results give the impression that strictly convex 

liear metric spaces behve like normed linear spaces. 

 The following two examples show that mere ball convexity 

does not guarantee the invariance of 

 sup {d (tx, 0) : t∈ R}  on X\ {0} 

 In the first example we follow the technique used in the 

proof of the following result of Walter Rudin (Theorem 1.24 of [7]). 

"If X is a topological vector space with a countable local base, 

then there is a metric d on X such that 

(a) d is compatiable with the topology of X 

(b) The open balls centred at 0 are balanced, and 
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(c) d is invariant i.e  

d (x + z, y + z) = d (x, y) for x, y, z ∈ X . 

 If, in addition, X is locally convex, then d can be choosen so 

as to satisfy (a), (b), (c) and also 

(d) all open balls are convex." 

Example 2.2.7 [9] 

 Let  2

1

1
V  = {(x, y) R  : y  < }, and

2
 

 2 2 2 1/2

n n

1
V = {(x, y) R  : (x  + y )  <  } for n= 2, 3 ...

2
  

Then 

 { nV  : n = 1, 2, ...} 

is a balanced convex local base at the origin for the Euclidean 

topology on 2R . Also 

  n+1 n+1 nV +V V   1,2,...for n  

 Let D be the set of rational numbers of the form 

 n nn=1

1
r = Σ C  (r) 

2



 

where each of the digits ( )iC r is 0 or 1 and only finitely many are 1. 

Define 

 ( ) = {

     ≥ 1
 
 

 = 1
  ( )     ∈  .

 

Also define 
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 f(x) = inf {n : x ∈ A(r)} for x ∈ 2R   

and d (x, y) = r (x – y) , (x∈ 2R , y∈ 2R ) 

Then ( 2R , d) is a linear metric space, all of whose balls are 

convex. Further 

 sup {d (t(0, 1), (0, 0) ) : tϵR} = 1

2
 

and 

 sup {d (t(1, 0), (0, 0) ) : tϵR} =1 

 The metric d in this example can be explicitly  expressed as 

follows: 

Let (x, y) ϵ 2R . Then 

d(x, y), (0, 0) ) = 

1
( , ) ( , )

2

1 1 1
( , )

2 2 2

1
1

2

1 1

x y if x y

if x y and y

y if y

if y





  



 

 

, 

where 2 2 1/2(x, y)  = (x  + y )  

is the Euclidean norm. Here we have 

2

2

2

2

1
{( , ) : , } if 0<r<

2

1 1 1
{( , ) : , , } if r =

2 2 2
[0, ]

1
{( , ) : }   if 1

2

1
{( , ) : 1}   if 1

2

x y R x y r

x y R x y y

S r

x y R y r r

x y R y r


 


   


 
    


    


  

 

Example 2.2.8 [9] Define d on 2R  as follows: 
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





 






1
(x,y) if (x,y)

2

1 1 1
((x,y), (0,0)) if (x,y)  and y  

2 2 2

1
y if y  

2

d  

where 

2 2 1/2(x, y)  = (x  + y )  

is the Euclidean norm. Then ( 2R , d) is a linear metric space 

with ball convexity. The metric nature of d follows immediately, if 

we observe that 

y  d ((x, y), (0, 0) x, y   

for all (x, y) ϵ 2R  

 In example 2.2.4, the ' superemum' is finite in each 

direction whereas, here the 'superemum'  is finite in one 

direction and infinite in another. Infact, 

 sup{d( ( t, 0), (0, 0) ) : t ϵ  R} = 
1

2
 

and 

 sup{d (( 0, t) , (0, 0) : t ϵ R} =   

 Now we shall show that closed balls in a strictly convex 

linear metric space with non-empty surface are compact if the 

space is finite dimensional. We shall be using the following result 

of Walter Rudin (Theorem 1.28 (b) [ii]. "If {xn} is a sequence in a 
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metrizable topological vector space X and if 0nx         as n  , 

then there are positive scalars n  such that 

 n     and 0n nx   

Theorem 2.2.3 [9] Let (X, d) be strictly convex linear metric 

space and finite dimensional. If S {0, r] ≠ ∅ then B [0, r] is compact.  

Proof   Since (X, d) is finite dimensional linear metric space, it is 

normable . Let  be a norm compatible with the topology on X. Since B 

[o,r] is closed, it is sufficient to show that it is norm bounded. Suppose that 

B [0, r] is unbounded in the norm. Then there exists a sequence {tn} of 

positive scalars and a sequence {xn} of vectors of unit norm such that  

nt       as  n   and n nt x  ϵ B [0, r) for all n. Since (X ) is a finite 

dimensional normed linear space, {xn} has a convergent subsequence. We 

may suppose that {xn} is convergent with limit, say x0. Then ( 0x )=1. Since         

the norm topology and d-topology are the same, 

                                 0( ,0) 0nd x x   as n      

Hence by the above theorem, there exists a sequence {αn} of 

positive scalars such that 

 n   and 0( ( ),0)n nd x x      0 as n         

Let  n= min {t , }.n n  Then  

            n    as  n  . 
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 For a positive integer m let ε > 0. There exists n > m such 

that 

 n  > m  and d ( n ( nx – 0x ), 0 ) < ε. 

Now 

 d ( m x0, 0 )  0 d (  ,  0)n x  

0 d ( ( ),0)  (  ,  0)

   + d (t  ,  0)

   + r.

n n n n

n n

x x d x

x

 





  





 

This being true for each ε > 0, we have 

 0d (  x ,0)m r   

so that  0x [0, ]m B r  for each m. Since 

  n        and B [ 0, r] is convex, it follows that 

(1)     sup {d ( t
0

x  , 0) : t ϵ R} ≤ r 

    But, since S[0,r] ≠ ∅, there exists y ϵ S[0,r] and by theorem 3.1, 

it follows that 

(2)  sup { d ( t y , 0) : t ϵ R } > r 

(1) and (2) contradict each other in view of corollary 2.2.2.  

Hence B [0, r] is compact. 

 Next theorem shows that a strictly convex finite dimensional 

linear metric space in the presence of an unbounded metric is 

totally complete, a notion introduced in [1] 
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Lemma 2.2.3 [9] A strictly convex finite dimensional linear 

metric space with an unbounded metric is totally complete. 

Proof : Let (X, d) be strictly convex, finite dimensional linear 

metric space and d be unbounded. Let r > 0. Since d is 

unbounded, there exists y ϵ X such that 

 d (y, 0) > r. 

Hence by the continuity, there exists tϵ ] 0, 1 [such that d (t y, 0) 

= r so that S [0, r] ≠ ∅. Therefore by Theorem 2.2.3, B [0, r] is 

compact. Hence, every closed ball and therefore every d-bounded 

closed set is compact.  

 In a linear metric space if the metric is additive along a half-

ray emanating from the origin, then it is a norm along the line 

determined by the half-ray, More generally, we have the following 

result, the proof of which is immediate. 

Lemma 2.2.4 [9] Suppose  0x  , 0y ϵ X are such that 

(1) d (x, y) = d (x, z) + d (z, y)  ϵ [x, y] 

whenever x, yϵ [ 0x , 0y ]. Then 

 d (t 0x , t 0y ) = t 0 0( , )d x y for all t ϵ [0, 1]. 

 The above result need not be true, even when (X, d) is 

strictly convex if (1) is replaced by 

 0 0( , )d x y  = 0 0( , ) ( , )d x z d z y   z ϵ 0 0( , )x y  
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as the following example shows: 

Example 2.2.9 {15] Define f : R R     by 

f (t) = 

4 1
 t      if        0 t 

3 4

2 1 1 3
 t     if       t

3 6 4 4

2 1
   if       t 1

3 3
t


 




  



 


Then (R, d), where 

 d (x, y) = f ( x y )x, y ϵR, 

is a strictly convex linear metric space. Clearly  

 d (0, 1) = d (0, t) + d (t, 1)  t ϵ [0, 1] 

but  

 d (0, t) = td (0, 1)  t ϵ [0, 1] 

is not true. 

 The following example shows that the distance between two points 

can be the sum of their distances from an intermediate point but at the 

same time it may not be so for every intermediate point, even in a strictly 

convex linear metric space. 

Example 2.2.10 [9] Define f : R R      by 

f (t) = {
  

   
  0 ≤   ≤ 1

    ≥ 1
 

Then (R, d), where 

 d(x, y) = f (|   |   x, y ϵ R, 

is a strictly convex linear metric space. We have 

7 7
d (3, 4) + d (4, 5) = d (3, 5) d (3, ) + d ( , 5)

2 2
  
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Now we show that strict convexity is weaker than property (P) but 

stronger than the property ( 1P ). This is the essence of our next 

theorem. 

Theorem 2.2.4 [4] Let (X, d) be a linear metric space, we have: 

(i) If (X, d) has property (P) then it is strictly convex. 

(ii) If (X, d) is strictly convex then it has property (P1). 

Proof  (1) Suppose (X, d) is not strictly convex. Then by lemma 

3.2 ([3]) there exists an r > 0 and distinct points x and y such 

that 

 d (x, 0) = d (y, 0) = r 

and B [0, r] ⋂] x, y [ = ∅. 

consider the compact line segment [x, y]. This set is proximinal 

let f : E   [x, y] be the nearest point mapping then 

 f (0) = x, f (0) = y. Consider 

 d (x, y) = d (f (0) , f (0) ) ≤ d (0, 0)= 0 

[By property (P)] and so x = y, a contradiction. 

(ii) If d (x + z, 0) < d (x, 0) and 

2d (y, x) ≤ d (x, 0) – d (x + z, 0) 

then 

 d (y + z, 0) ≤ d (x + z, 0) + d (y, x) ≤ d (y, 0) 

Thus property (P1) is satisfied if 

 b = [d ((x,0) - d (x + z, 0)]/2 and C = 1. 

If d (x + z, 0) = d x, 0) 
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then by the strict convexity, 

z x + z + x
d (x  + , 0) = d ( , 0) d (x ,0)

2 2
   

and so property ( 1P ) is satisfied if 

 1
b = [d {x, 0)   = d(x + ,0)]/2  and C =  as

2 2

z  

d (y + , 0 )   d(y, x) + d (x + ,0)
2 2

z z
  

  d (y, x) + d (x, 0) - 2 b  

  x (x, 0) -b  

  d (y, 0).  

Theorem 2.2.5 [1] A complete convex set K in a linear metric 

space (X, d) satisfying the property (P) is Chebyshev. 

Proof :  Let g ϵ X and 

  r = inf {d (x, g) : x ϵ K} 

By definition of infimum there is a sequence nx   in K such that 

nlim.   d (x , g) inf {d (x, g): }
n

x K


   

By property (P) we have 
kn

x   in K. K being complete, 

 
kn

x  x ϵ K 

and consequently 

 d (x*, g)≥ r. 

Also d (x*, g) ≤ d (x*,
kn

x ) + d (
kn

x , g)  

implies 
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 d (x*, g ) ≤ r. 

Hence  

 d (x*, g ) = r 

Now, if possible 

 * *

1 2x , x , K  

be such that 

 * *

1 2d (x , g) = d (x , g) = r.  

Consider the sequence nx   defined as 

 
*

1

n *

2

x if   n   is    odd
x =

x if   n   is   even.





 

Then lim
n

 d ( nx , g) = d ( *

1x ,  g) = d ( *

2x , g) = r  inf {d(x, g) : x ϵ K}. 

By property (P), nx   has a Cauchy sequence 
kn

x   and therefore for 

a given ε > 0, there exists a positive 

integer N such that 

( , )   for all n ,  N,
k kn m k kd x x m   

 
* *

1 2i.e. d(x , x )    

  being arbitrary, 
* *

1 2x = x .  
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