MODULE" - 6
ON NON-EXPANSIVE RETRACTS

In order to generalize a theorem of Belluce and kirk [1] on the existence
of a common fixed point of a finite family of commuting non-expansive
mappings, Ronald E. Bruck Jr.. [3] studied some properties of fixed-point sets
of non-expansive mappings in Banach spaces. In this paper, we extend some
results of [3] to convex metric spaces. We also prove that the fixed point set of
a non-expansive mapping satisfying conditional fixed po@ erty (CFP) is a

non-expansive retract and hence metrically convex.

To start with, we recall a few definitions. C\DQ

Definition 6.1 [3]. Let (X,d) be a metric space and C a closed convex subset of
X. A mapping T:C— X is said to satis?,@onditional fixed point property (CFP)
if either T has no fixed point or T I@ Ixed point in every non-empty bounded

closed convex [3].

Definition 6.2 [3] A set C is said to have the fixed point property (f.p.p.) for

non-expansive ma mgs if every non-expansive mapping of C into C has a

fixed point. Q

Definition 6.3 A subset of a metric space (x,d) is said to be matrically convex

[4] if for each pair of distinct points X, , X; of F, there exists a point y in F

distinct from X, and X; such that d( X, X;) =d(X, y)+d(y, X,).

The following theorem shows that the non-expansive retracts are

metrically convex.

Theorem 8.1 [5]. Let C be a non-empty convex subset of a convex matric space

(X,d). Then non-expansive retracts of C are metrically convex.
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Proof. Let r be a non-expansive retraction of C onto F and X; , X, be two distinct
points of F. For tin [0,1], consider W(*o %1 ,t) =%t < CSince r(%)=% #* X by

the continuity of W and r the mapping t = r(*) is distinct from x, and X .
Let y be one such r (X;). Then yeF is distinct from X, and X; while
d(%,%)  =d{r(%), r(*%))

Sd(r(%o), r(%)) + d(r(X), r(%.))

<d (X, X )+d(X , X) (r being no @sive)

Q
=d (X ,w (X, ,%,t)+ d(W(%’ 5 )

std (%o, %) + (1-) d (%o, %) +1d (%, %)

+(1-)d (% X@]e convexity of X)

=d(X, % )
So, equality holds {oyghout and in particular,
d(r(%o ), r(*1))=d(r(*o), r(*)) +d(r(%), r(*))
l.e.d (X ,X)=d(X% ,y) +d(y, X ). Hence F is metrically convex.

Next we shall show that the fixed point set of a non-expansive mapping
satisfying (CFP) is a non-expansive retract of C and hence metrically convex.

To achieve this, we firstly prove a few lemmas:

Lemma 6.1. [5]. Suppose F is a non-empty subset of a locally compact set C in

a metric space (X,d) and let N(F)={f : f:C — C is non-expansive and fx=x for all
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xeF}. Then N(F) is compact i.e. the set of all non-expansive retractions of C

onto F is compact.

Proof. Fix X, € F and for xeC define
Co={yec:d(y, X )d(X, X)).
For each x in C and f in N(F), f(x)€C, since f(c)<=c and

d(fX, Xo):d(fx,fxo) <d (X, Xo).

Thus by the definition of cartesian product of i@family, N(F) is a
subset of the cartesian product P=]|C,. C%th

xeC

Since C is locally compact, each C, is compact and so by Tychonoff's

theorem P is compact. Q.

Now we show§ IS closed in P. Let < f, >be a sequence of

elements in N(F) with < f o i.e. £,:C—>C js non-expansive and fx=Xx for

all xeF and for each n.
L 3

Then. fx=x= X=x= fx=x

n—>

Also,

d(fyx, f,y)=d(lim f x,lim f y)
=limd(f x, f y)
<d(x,y) (each f, being non-expansive)

Therefore, N(F) is closed in P and hence compact.
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Lemma 6.2. [5] , Suppose F is a non-empty subset of a locally compact set C in
a metric space (X,d). Then there exists an r in N(F) = {f : f. C--->C is non-
expansive and fx=x for all X € F} such that each f in N(F) acts as an isometery

on the range of r i.e.

d(f(r(x)), f(r(y)) ) =d (r (x), r(y)) forallx,y eC.
Proof. Define an order < on N (F) by setting f<g if

d(fx,fy) <d(gx,gy) for all x,y in C with inequality holding for atleast one pair
of X, y.

Clearly < is a partial order on N(F). ‘(Q

For each f in N(F), we define M={ g € N(Q\S@T

Clearly M is closed in N(F) (Let <9, > be a sequence of

elements in M with <g,>>0,. So ?—W is non-expansive, 9,X=X for all
xeF and 9,< . As discusséi fLemma 6.1 ; we have 0,:C—>C is non-
expansive with g,X=X and also 9,<f implies limg, < f and hence J, eC).
Therefore M is cIo%j in N(F) and hence compact as N(F) is compact.

It follows that ( N(F), <) contains a minimal point. Indeed by zorn's
lemma, it is sufficient to show that whenever {0, : 4 € A} is linearly ordered by
<, then there exists g in N(F) with g < 0, for all A. But if the 9, s are linearly
ordered by <, family {M(9,): 4 € A}is linearly ordered by inclusion. Since each
M(9,)is compact and non-empty, there exists 9€NM(9,)i.e. there exists g in

N(F) with 9<0, foreach 1.
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Hence there exists a minimal element r of N(F) It si easily verified that
for for eN(F) whenever f N (F)

(i) d(fer(x), for(y)=d(f(r(x), f(r(y)
<d(r(x),r(y))

and

(il) (for)(X)=fr(x)=Ffx)=x or foreN(F).

Now in particular d(f or(x), f or(y)) <d(r(x),r(y))

o
If inequality holds in (6.1) for any pair %&Q then for <rwhile for

f or eN(F), contradicting the minimality of r in ). Therefore, equality holds

in (6.1) for each x, y in C.

i.e.d(f(r(x)),f(r(y)))é@*r(x),r(y))forallx,yec.

Using Lemmas 6.1&2, non-expansive retracts of C can be

described as:

Lemma 6.3 [5 pose C is locally compact and F a non- empty subset of C
In @ metric spac ,d). Suppose that for each z in C there exists h in N(F) such

that h(z) e F. Then F is a non-expansive retract of C.

Proof. Since F is a non-empty subset of a locally compact set C, by Lemma 6.2,
there exists an r in N(F) = { f . f : C— C is non-expansive and fx=x for all x e F
} such that each element of N(F) acts as an isometery on the range of r. Since re
N(F) we get r:C — C is non-expansive and rx=x for all xe F. So, to show that r is
a non-expansive retraction of C onto F, it is sufficient to show that r(x) F for

each x in C.
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Applying the given hypothesis to the point z=r(x), there exists h in N(F)
with h (r(x) ) €F. Lety =h(r(x) ). By Lemma 6.2,

d(h(r(x) ), h (r(y))) =d(r(x), r(y)) (6.2)

Since yeFand h, reN (F) , we have h (y) =yand r (y) =y and hence
y=h (r (y ) ) while y=h (r (x) ) by definition. So it follows from (6.2) that r(x) =
r (y) . Sincer (y) =y, r(x) = yeF for each xcC. Therefore r : C—F is a non-

expansive retraction and hence F is a non-expansive retract of C.
It was show in [2] that if C is a closed convex subset of% real, reflexive,

strictly convex Banach space X and T: C—C is non-e e then F(T) is a

non-empty closed convex, locally weakly comp

non-expansive retract of C. The same conclusion w. nin [3] when C is a
@%et of a Banach space and

T:C— C is a non-expansive mapping satisfying (CFP). In convex metric spaces

we have. Q’

Theorem 6.2 [5] Let C be a lo @ ompact, convex set in a convex metric

space (X,d) with propertie (1”) and T:C— C a non-expansive mapping

satisfying (CFP) then F(T) is a' non-expansive retract of C.

Proof. Since th e@ty set, by definition, is a non-expansive retract of C, we

assume that F( ¢.
FixzinCand definek={f(z) :fcN(F(T))).

Clearly K is the image of N(F(T)) under the z" co-ordinate projection
map of P onto C,. Since N(F(T)) is compact (Lemma 6.1) and the projection
continuous, K must be compact and hence bounded. Clearly K is non-empty.

We claim that K is convex.

Letf, g <N (F(T)) .and 0<A<1. Since N(F (T) ) =
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{f:f:C—Cisnon-expansive and fx=x for all x <F (T) ), We are to show that

(i) W(f,g, 1) (x)=xforall xcF (T) and
(i) W(f, g, 2):C—C isnon-expansive
(i) Letx <F(T) Consider
d(W(f, g,2) (x), x) = d(W(f(x), 9(x), 1), x)
<ad(f(x),x) +(1-2) d (9(x), X))
(by the convexity of X)
= 2d (X, x) = (1- 2)d( x,x) (as f, ge N (F(T)))
=0

&
implying W(f, g, 2) (x) =x forall x « F(T). Conside;és
d(W(f,g, 1) (x), W(f.9,2) (¥) ) C\DQ

= d(W(f(x), g(x), 1), W(F(y) , 9(y). 1))

<d(w(f(x),g(x),4), x),9(y).A))

+§@o, g0y). AW (X, g)A)

<(@-2)d@x).gy))+2dEM). f(x))

Q’&‘ (by properties (1" ) and (1))

< (1-A)dxy)+Ad(xy)

(as f, g are non-expansive)

=d(x,y)

implying that W (f , g , 2) is non-expansive. Therefore k is a bounded, non

empty, closed and convex subset of C.

Since Tof < N (F(T) ) whenever fcN (F (T) ) as
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d(T o f(x),Tof(y) = d(T(f(x)T(f(y)
=d(Tx, Ty) (asf(x)=xandf(y)=y)
<d(x,y) (as T is non-expansive)
and Tof() =T (F(X))
=T (X) (asf(x)=x)
=xforallx e F(T),
we have T (K) n K.

Since T satisfies (CFP) and K is a non-empty b &ﬁlosed convex set
that T leaves invariant, T has a fixed point in It%@h re exists h in N (F(T) )
with h (z) in F(T) .

Since this is so for each z in C, %l_emma 6.3, F(T) is a non expansive

retract of C.

Corollary 6.1 [5]. Let C b%q -empty locally compact convex subset of a
convex metric space (X,d) satisfying properties (I) and (1), T: C = C be non-

expansive mapping satisfying (CFP) . Then F (T) is metrically convex.

<
Proof. By Th@w 6.2, F (T) is a non expansive retract of C and hence by

Theorem 6.1 , it is metrically convex.
The following lemma will be used in proving our next result.

Lemma 6.4 [5]. Suppose C is a convex subset of a strictly convex metric space

(x,d) with properties (I) and (1”) and Ty, T,,: C = C be non-expansive
mappings such that F(T,)AF(T,)#4 . Then exists a non-expansive mapping

T:C = Csuch that F (T) = F(T)nF(T,).

Proof. Define T: C = Cas
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T(X) =W(T,T, A)(x) =W(T,(X), T,(X), 2) for 0< A <1,
We claim that T is the required mapping.
Consider

d(Tx, Ty) =dW(T, T,A)(x), W(T,, T, A)(Y))
d(W(T,(x), T, (x), AW (T,(y), T, (v), 4))

= d (W (T,(X), T, (x), 4),W (T,(x), T, (y), 2)) »
A NIORA R NN
< (L= 2,00 T, () + Ad (T, 9. Ty ‘b‘s

(by%@pertles(l )and (1))
1-2)d(xy)+ad(xy)

Q. (as T,, T, are non-expansive)

=d(x.y) Q

implying that T is a non- ex@e mapping on C.

Now W@& that F (T) = F(T)NF(T,). Let xeF(T) NF(T,) ie T,(x)=x
and Tz(X) =X. Then T(X) = W(Tl(X) ) Tz(X) 1 /1) =W (X, X, 1) =X as

d (W(xx2) , x) < Ad (x, X) + - A) d (x, x) = 0. Therefore xeF (1) F(T)NF(T,) cK(T).

Now suppose xe F)yand Y, € F(T)NF(T,).

Consider

d(x, Yo) =d(Tx, Yo)
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= W(T,(x), T,(¥), 4), Yo)
<Ad(T), Yo )+ (@2-2)d (T.(X), Yo)
(by the convexity of X)
- 2d(L(X), To (¥ ) )+ (2-2) d (To(X) , T2 (y0) )
(as Y, € F(T)NF (T)
<ad(xY) +(@1-2)d(Xx %) ‘b.
(@s T, T, gre f@xpamswe)
=d(x, Yo ). %
Thus equality holds throughout and so A0y
d (W (L0, T,( ,@3’, Yo) =d(x, o).
Since d(Tu(X) , Yo) < d(x, o) and d (T,(X), ¥o) € d (X, Yo),

the strict conv@f X implies T,(X) = T,(X). Therefore

X=TX

=W (L(X) , T,(x), 1)
=w (), T(x) , 2)

= Tl(X)

Thus x = T,(X) = T,(X) andsox < F(T) = F(T,)nF(T,) implying
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F(T) < F(M)NF(T,).

It was shown in [2] that for a closed convex subset C in a real, reflexive,
strictly convex Banach space X , the class of non-expansive retracts of C is
closed under arbitrary intersection. The same conclusion was drawn in [3] when
C is a non empty closed, convex, locally weakly compact subset of a strictly

convex Banach space X . In convex metric spaces we have:

Theorem 6.3 [5]. Suppose (X , d) is a complete strictly convex metric space

with properties (1) and (I7), C a locally compact, convex set irys.and T,,T,:C
— C be non-expansive mappings. Then F(T,)NF(T,) i;@expansive retract

of C and hence metrically convex. \Q{b'
Proof. If F (T,)NF (T,) =¢ , then clearly F (%3“ F (T, ) is a non-expansive
retract of C and thence by Theorem 6.1 is metrically convex.

Now suppose F (T.) ~F (T, )QQ'en by Lemma 6.4, there exists a non-
expansive mapping T:C %(&@g{)y
TX) =W (T,,T;, 1) (x), 05T such that f(T) = F (T, )N F (T, ). We
show that F (T, )" F (T, ) = F (T) is a non-expansive retract of C.

Let X « &F’(Tl)m F(T,). Then T, (x)=xand T, (x) =x.
Consider

d(™, x)  =dw(l ), T (x),4 ) %)

<2d (T (), + (1-2) d(T2 () X))
(by the convexity of X)
=2dXx)+ (2-2)d(x, x)
=0
and so Tx = x i.e. x is a fixed point of T in C.

Let K be a bounded closed convex set in C such that T leaves K invariant.
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Now T'=T/K:K =K s non-expansive as T:C—C is a non-expansive

mapping.
Since every convex set Is starshaped with respect to each of its elements

sois K. Letp beastarcentreof K and T,:K—>K be a mapping defined by
T,(x)=p forall xeK.

Let <k, >be any sequence of real numbers with 0<k <1 and k, =1,
Define T':K — K by T (x) =W(T, T,k )(X)for all xeK.
Consider

Q>
dTXTy) = dW(T",T,, k), W(T, T, K )(%) {@
©
= dW (T (x), p.k, ) W(T"(y), p.k,)) CD

<k d(T" (), T°(y)) (by property (1) )

N

<k d(x,Y) Q;Q (T* being non-expansive)
Thus T is a K, -contraction %@nd so by Banach contraction principle, T has
a fixed point, say X in K i.e 7" X, =X, ,

Now,

(%, T %)= @'&r? X)
= dW(T.T,.k)(%).T (%)
= dW(T (%), p.k,).T (%))

<k d(T *(xl),T*(xi))+(1—kn)d(p,T*(x1)) (by the convexity of
X)
—0as N> o,

So for X, €K, we have T'(x)=xie. T =T/K has a fixed point in K implying

that T has a fixed point X, in every non-empty closed convex set K that T leaves
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invariant i.e. T satisfies (CFP). Thus we get a non-expansive mapping T:C

— C satisfying (CFP). So, by Theorem 6.2, F(T) is a non-expansive retract of C
and hence by Theorem 5.1, F(T,)nF(T,) = F(T) is metrically convex.
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