MODULE" - 5

FIXED POINTS AND APPROXIMATION

This module deals with the structure of fixed point set, the

problem of invariant approximation and an application of fixed point
theorem to & — Simultaneious approximation.

It is known (see e.g. [4] Theorem 6, p. 243) t% for a closed
convex subset K of a strictly convex normed line@e X and a non-
expansive mapping T:K--—->X, the fixed poi ssibly empty) of T is
a closed convex set. We extend this result to pseudo strictly convex
metric linear spaces in the first sect%

Fixed points of non-ex e mappings have been extensively
discussed in strictly co@ormed linear spaces (see e.g. [87]. Using
fixed point theory, Meinardus [107] and Brosowski [57] established some
interesting r &0&1 invariant approximation in normed linear spaces.
Later various researchers obtained generalizations of their results (see
e.g. [8] and the references cited therein). In the second section we
extend and generalize the work of Brosowski [5], Hicks and Humphries
[7], Khan and Khan [9] and Singh [157, [16] to metric spaces having
convex strucrure and to metric linear spaces having strictly monotone
metric (a notion introduced by Guseman and Peters [6]). We have

proved the existence of an invariant point X, in the set P¢(x) satisfying
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certain conditions. We have also established a result on invariant
approximation in strictly convex metric spaces in this section.

Some applications of fixed point theorems to best simultaneous
approximation were given by Ismat Beg and Naseer Shahzad [7], R.N.
Mukherjee and V. Verma [11] and few others when the underlying
spaces are normed linear spaces. Using a result of Beg and Azam [17] on

fixed points of mutivalued mappings, we give an application of a fixed

point theorem to & — Simultaneous approximation @n the spaces are

convex metric spaces in the third section of tl@pter.

5.1 Fixed Points in Pseudo Strictly Convex Spaces

The following theorem give tISOtructure of the fixed point set of a

non-expansive mapping in pseud tly convex metric spaces:

Theorem 5.1.1 [13] : % osed convex subset of a convex metric
linear space (X, d) with p strict convexity and T : K — X, a non-
expansive mapping. Then fixed point set (possibly empty) of T is a

closed, convex se
Proof: Let %{ K: TX=X} be the fixed point set of T. Firstly we

prove the closedness of the set F. Let x be a limit point of F. then there

exists a sequence {x.} in F such that {x.} — x. Since a non-expansive
mappint is always continuous, we get TX, = TX. Also TX, =X, = X,
as X, € F and so Tx=x i.e. X € F . Hence F is a closed set.

Now we show that F is convex. Let x, y € F and 4 €[0, 1] Then
x, Y€K and so AX + (1-1) Y=Z (say) € K Consider

d(x,Tz) = d(Tx, T2)
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(1-2) d (x,
= d (Tz, Ty)

d (z,y) (as T is non-ex
d(Ax+(1-1)y,Y)

) - ()Y Y) S
(by the y of X)

Therefore, d (x, T

Also by the triangle inequ

d(x,y) <d(x, Tz) + d (Tz,
&

ore Q

=d (x, Tz) + d (Tz,Yy)

, 0)=d (x-Tz, 0) +d (Tz-y, 0).

vexity of X, we have

/(1+k) i.e. TzE[X, y]
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nsivity of T implies Tz=z. Since
€ [X,y] an ween X and Tz or between x

and Tz or between

Suppose z lies betwee
d (Tz, x) =
< d(z x)as

+ d (z, x) = d (Tz, x)

IA

d (z, x)
Tz=12z {bs
z and y, Wganall get Tz=z. Ther
, for all x, yeF and 0 <A <1.
Hence F is a co

5.2 Invariant Appro

In this section, we e the results of

Brosowski [57], Hicks and Humph

.
16 o&'ariant approximation i

inear spaces having strictly mono

Singh

tric spaces.

a few definitions.
a metric linear space. The metric
X is said if X#0, 0 < t<1implyd (tx,

0) <d (x, 0).
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Definition 5.2.2. A metric linear space (X, d) is said to satisfy property (
*) if

d(Ax+(1-1)y,2) < Ad(X,2)+(1-4)d(y, 2
for every x,y,z € Xando <A < 1.
Clearly, every normed linear space satisfies property ( * ).

The following lemma in metric linear spaces satisfying property ( *
) will be used in the proof of Theorem 5.2.1.

Lemma 5.2.1 [14] Let (X, d) be a metric linear s@satisfying

property (*), C a subset of X and x€X. The&‘@c 0C N C where 6C

is the boundary of C.

Proof. Let Y € PC(X). For each pos@ integer n, let A, =N /(n+1).

Since d (Y, lny . (1—/1 @%-ﬁ ) d (X, y) for all n (using property
X]

(%)), lim [Ay + (1-4,)

So each neighbourhood of y contains

atleast one A 'I’Q.J,n) X. Also,

diy,Ay+1-4)x) < Ad(yX)< d(y,X) for all n implies that
Ay + (1- ﬂn) X ¢ Cfor any n i.e. y is not an interior point of C and so

yeoC. AlsoyeP.(x) implies yec.. Thus, Yye€dCMNC and hence
P.(X) coCnC.
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We have the following result on invariant approximation in metric
linear spaces:

Theorem 5.2.1 [14]. Let (X, d) be a metric linear space with strictly

monotone metric d and C a subset of X. Let T be a non-expansive
mapping on P (X) W{X} where x is a T-invariant point. Then there is a

Xo in Pc (x) which is also T-invariant provided.
(a) T:0C---> C
(b)Pc (x) is nonempty, starshaped and compact.
(c) Either C is closed or (X, d) satisfies property ( * (b'

Proof. Let P be starcentre of P.(x), then AX+ (1— & = (X) for every

Xep.(X), 0<A<1. We claim that T: Pc(x)%).

Suppose (X, d) satisfies property (* ) then by Lemma 5.2.1,

P.(X) coCNC.Sofor Ye pc&@get Ty €C as T:0C --->C.

Suppose C is close Qf/ € P.(X) implies Y € OC leading to Ty
€Cas T:0C --—->C.
Thus indefh the cases, Ty €C. Consider
d(x, Ty) = (Tx, Ty) (as x is a T-invariant point)
< d(Xy) (as T is non-expansive on P, (x) u{x})
= d(x,C)
< d(x, Ty).

This give d (x, Ty) = d (x, C) i.e. Ty € P, (X) for Yy € P. (X) and hence T:
Pe (%) ——>P. (%).
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Let k., 0 < k.< 1 be a sequence of real numbers such that k.-—>1 as
n--->00. Define Tw: P (X)) —>P.(X)as Ty=Kk_ Ty+ (1-k,) p for every
Y € P.(X). Since T maps P (X) into P.(X) for each n (Y € p;(X) and T:
P.(X)--—>P.(X) imply Ty € P.(X) and P (X) being starshaped w.r.t. p
we get K Ty + (1-k. ) peP.(X)).

Also,
d(Mx Ty = d(Kk Tx+1-k,)p, k, Ty+(1-k, )p)

Q‘b
_ d (k. (Tx-Ty), 0) ,83
< d(Tx-Ty,0)(asdis strictlﬁ%)tone)
= d(Tx, Ty)
< d(x,y)(@sTisn pansive on P, (x) u{x})

= d(k,Tx k,Ty)

Hence T.is non—expansn@}% % (X) U{X} for each n. Since P.(X) is

compact and starshaped, s a unique fixed point, say, x.for eachn (

[6], Theorem 2) i.e. T:x» = X. for each n.
%
Since F’@ 1% compact, <x.> has a convergent subsequence

X, —— >X, € P;(X) . We claim that Tx.=x..
Consider X, = T X, = k, +(1-k,) p. Taking limit as i-—->®, we
get Xo=Xo(X, ——>X, implies T, ——>TX,as T is continuous on

P.(X) u{x} i.e. X, € P.(X) is T-invariant.
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Since every normed liner space is a metric linear space with
property (*) and the metirc induced by the norm is strictly monotone, we
have:

Corollary 5.2.1 [57] . Let T be a non-expansive linear operator on a
normed linear space X. Let C be a T-invariant subset of X and x a T-
invariant point. If the set of best C-approximants to x is non-empty,
compact and convex, then it contains a T-invariant point.

Corollary 5.2.2 [15]. Let T be a non-expansive m@i? on a normed
linear space X. Let C be a T-invariant subset 0(5, nd x. a T-invariant
point in X. If D, the set of best C—appro%aants to X. is non-empty,
compact and starshaped, then it contains a T-invariant point.

Corollary 5.2.3 [16] . Let X b@ormed linear space and T:X--->X a
mapping. Let C be a subsgt such that C is T-invariant and let x. be a
T-invariant point in X. If D, the set of best C-approximants to x. is non-
empty, compact q{l Starshaped and T is

(i) contindus on D
(i) [xy| < d (x5 C) = [Tx-Ty| forx,yin DuU{x},

then it contains a T-invariant point which is a best approximation to X. in
C.
Note: The continuity of T on D need not be assumed as it follows from
(i)

Since each p-norm generates a translation invariant metric d

satisfying property ( * ) and is strictly monotine, we have:
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Corollary 5.2.4 [9]. Let (E,|{.) be a p-normed space, T:D-->E a non-

expansive mapping with a fixed point ueE and C a closed T-invariant

subset of E such that T is compact on C. If P (u)is starshaped, then there
exists an element in P.(u) which is also a fixed point of T.

In strictly convex metric spaces, we have the following result on
invariant approximation:
Theorem 5.2.2 [14]. Let (X, d) be a strictly convex metric space and T a

non-expansive mapping on P_ (X) U{x} where x is a T—inrgant point.

Let C be a subset of X, T : 6C--->C and P (x) be no@ty and

starshaped with starcentre q. Then P (X) :{®n Tq=q.

Proof. Let p#Qe PC(X). Then d (x, p) = d (x, q) = d (x, C). Since p=q,

strict convexity of the space impql':@'%x, W(p,q 4))<

dist (x,C) and so W(p, q, @), 0 < 4 < 1. Starshapedness of P_ (X)

therefore implies p=q i.e. P.(X)={q}. Since X is convex, P.(x) coCNC

(Lemma 3.2 E@&Sﬁ for y e P.(x), we get TyeC as T:0C--C. Consider

d(x, Ty) = d (Tx, Ty) (as x is a T-invariant point)
< d (x,y) (asT is non-expansive on P.(X)U{x})
= d (x, C)
< d (x, Ty).

This gives d (x, Ty) = d (x, C) i.e. Ty e P.(x) for y e P.(x) and so

T:P; (X)----> [ (X) . Hence TgqeP, (X) ={q}, i.e. Tq=q.
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5.3 Fixed Points and &- Simultaneous Approximation

Using a result of Beg and Azam [17] on fixed point of multivalued
mappings, we give an application of a fixed point theorem to
&- Simultaneous approximation in convex metric spaces in this section.
We start with a few definitions.
Defintion 5.3.1. A metric space (X, d) is said to be e-chainable (see e.g.
[8]) if given x, Y € X, there is an e-chain from x to y (i.e. a finite set of
points X=z., Zi, Zs,...,Z.=y such that d (z-..z:)< € for all i= 1,2, ..., n.
Definition 5.3.2. A mapping T:X --> CB(X) is called an (g, 1)- uniformly
locally contractive mapping (where £€>0 and 0<A4 e eg.[3] if x,
yeX and d(x, y) < € then H (Tx, Ty) < Ad (X,@S\' ere H stands for
Hausdorff metric on CB(x).

An application of a fixed point theorem to b.s.a. was given by Beg

and Shahzad [2]. Using the following simplified version of a result due to
Beg and Azam [17]:

space T:X -->CB(X) satis e condition:

Lemma 5.3.1 Let (x,d) be @e g-chainable metric
0<d(x, y) <¢ implies H (Tx, Ty) <kd (X, y)
where ke [0,1], t n there exists a fixed point of T.
We nov@end the result of (2] to &-s.a.
Theorem 5.3.1[127]. Let (x, d) be an g-chainable convex
metric space satisfying condition (I) and T:X -->CB (X)) be
a multivalued mapping. Let G e CB(X). For Fe CB(X), if
cento(F,€) is compact, starshaped, T-invariant and T is
(1) continuous on centc (F,€) and
(1) d(x, y) < H(F, G) implies H (Tx, Ty) < d (x, y) for
all x,y in cents(F,e)UF, then cents(F,g)

contains a T-invariant point.
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inor modification

W(x, p,A) € cents(F,¢) for
sequence of real numbers with 0<

e T.: cents(F,g) ——>CBcents(F,€)) a
= W(Tx, p, k.) = U W (y, p, k.) for
yeT

is well defined as for g.€ centc(F,£)

W(g,.p, kn)) asg, € centc(F,sQ
€) being starsh \%{b.

nte(F,€) %

i.e. for go .)€ CB (cents(F,g) ).

for all d(x, y) < H (F, G) which im
, G), ku)
ows by’ Lemma 5.3.1 that each T. h
ince cents(F,€) is given to be comp

t subsequencex,;--->z and so

lies ze W (Tz, p, 1) = Tz).
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