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MODULE* – 5 

FIXED POINTS AND APPROXIMATION 

 

 This module deals with the structure of fixed point set, the 

problem of invariant approximation and an application of fixed point 

theorem to imultaneious approximations  . 

 It is known (see e.g. [4] Theorem 6, p. 243) that for a closed 

convex subset K of a strictly convex normed linear space X and a non-

expansive mapping T:K--->X, the fixed point set (possibly empty) of T is 

a closed convex set. We extend this result to pseudo strictly convex 

metric linear spaces in the first section. 

 Fixed points of non-expansive mappings have been extensively 

discussed in strictly convex normed linear spaces (see e.g. [8]. Using 

fixed point theory, Meinardus [10] and Brosowski [5] established some 

interesting results on invariant approximation in normed linear spaces. 

Later various researchers obtained generalizations of their results (see 

e.g. [8] and the references cited therein). In the second section we 

extend and generalize the work of Brosowski [5], Hicks and Humphries 

[7], Khan and Khan [9] and Singh [15], [16] to metric spaces having 

convex strucrure and to metric linear spaces having strictly monotone 

metric (a notion introduced by Guseman and Peters [6]). We have 

proved the existence of an invariant point x0 in the set PC(x) satisfying 
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certain conditions. We have also established a result on invariant 

approximation in strictly convex metric spaces in this section. 

 Some applications of fixed point theorems to best simultaneous 

approximation were given by Ismat Beg and Naseer Shahzad [7], R.N. 

Mukherjee and V. Verma [11]   and few others when the underlying 

spaces are normed linear spaces. Using a result of Beg and Azam [1] on 

fixed points of mutivalued mappings, we give an application of a fixed 

point theorem to imultaneous approximation  s  when the spaces are 

convex metric spaces in the third section of this chapter. 

5.1 Fixed Points in Pseudo Strictly Convex Spaces 

 The following theorem give the structure of the fixed point set of a 

non-expansive mapping in pseudo strictly convex metric spaces: 

Theorem 5.1.1 [13] : Let K be a closed convex subset of a convex metric 

linear space (X, d) with pseudo strict convexity and T : K   X, a non-

expansive mapping. Then fixed point set (possibly empty) of T is a 

closed, convex set. 

Proof:  Let  F = {x  K: Tx=x}  be the fixed point set of T. Firstly we 

prove the closedness of the set F. Let x be a limit point of F. then there 

exists a sequence {xn} in F such that {xn}   x. Since a non-expansive 

mappint is always continuous, we get Tx  Tx.n   Also Tx  = x  x.n n   

as xn F  and so Tx=x  i.e. x F . Hence F is a closed set. 

 Now we show that F is convex. Let x, y F  and  [0,  1]   Then 

x,  Ky  and so x + (1- ) y=z   (say) K  Consider 

 d (x, Tz)    =   d (Tx, Tz) 
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      d (x, z)  ( as T is non-expansive)  

      d(x, x+(1- ) y)   

       d (x, x) + (1- ) d (d, y)   

      (by the convexity of X)  

   =   (1- )  d (x, y).  

Also,  d (Tz, y)  =   d (Tz, Ty) 

       d (z, y)  ( as T is non-expansive) 

   =   d (  x + ( 1- ) y, y)   

       d (x, y)  +  (1- ) y, y)   

      (by the convexity of X)  

   =  d (x, y).  

 

 

Therefore, d (x, Tz) + d (Tz, y)   d (x, y). 

Also by the triangle inequality, 

 d (x, y)   d (x, Tz) + d (Tz, y). 

Therefore 

 d (x, y) = d (x, Tz) + d (Tz, y) 

i.e. d ( (x-Tz) + (Tz-y), 0)=d (x-Tz, 0) +d (Tz-y, 0). 

So by the pseudo strict convexity of X, we have 

x-Tz=k (Tz-y) i.e. Tz=x/(1+k)+ky/(1+k) i.e. Tz[x, y] 
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 Next we show that the non-expansivity of T implies Tz=z. Since z

 [x, y] and Tz [z, y], z will be either between x and Tz or between x 

and Tz or between Tz and y. 

Suppose z lies between x and Tz then 

 d (Tz, x)  = d (Tz, Tx) as x  F 

      d (z, x) as T is non-expansive. 

 Now d (Tz, z) + d (z, x) = d (Tz, x)  (as z  [x, Tz]) 

      d (z, x) 

implies d (Tz, z) = 0 and so Tz = z 

 Similarly, if z is between Tz and y, we shall get Tz=z. Therefore, 

Tz = z i.e. z F i.e.   x + (1- ) yF, for all x, yF and 0   1. 

Hence F is a convex set. 

5.2 Invariant Approximation 

 In this section, we extend and generalize some of the results of 

Brosowski [5], Hicks and Humphries [7], Khan and Khan [9] and Singh 

[15], [16] on invariant approximation in strictly convex metric spaces, 

in metric linear spaces having strictly monotone metric and in  

chainable convex metric spaces. 

 To start with we recall a few definitions. 

Defintion 5.2.1  [6]. Let (X, d) be a metric linear space. The metric d for 

X is said to be  strictly monotone  [27] if x 0,  0  t < 1   imply d (tx, 

0) <d (x, 0). 
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Definition 5.2.2.  A metric linear space (X, d) is said to satisfy property ( 

* )  if 

d ( x+(1- ) y, z)   d (x, z) + (1- ) d (y, z)     

for every x, y, z  X and o     1. 

Clearly, every normed linear space satisfies property ( * ). 

 The following lemma in metric linear spaces satisfying property ( * 

) will be used in the proof of Theorem 5.2.1. 

Lemma 5.2.1  [14] Let (X, d) be a metric linear space satisfying 

property (*) , C a subset of X and xX. Then CP (x) C C    where C  

is the boundary of C. 

Proof.  Let y Pc(x).  For each positive integer n, let / ( 1)n n n   . 

Since d (y, (1 ) )    (1- )  d (x, y)n n ny x      for all n (using property 

( *) ), lim
n

 [ y + (1- ) x] = yn n  . So each neighbourhood of y contains 

atleast one y + (1- ) xn n  . Also,  

d (y, (1 ) )    d (y,x) <  d (y, x)n n ny x      for all n implies that 

(1 ) x Cn ny    for any n   i.e.  y is not an interior point of C and so 

y C . Also ( )Cy P x  implies .y C . Thus,  y C C   and hence 

CP (x) C C   . 
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 We have the following result on invariant approximation in metric 

linear spaces: 

Theorem 5.2.1  [14]. Let (X, d) be a metric linear space with strictly 

monotone metric d and C a subset of X. Let T be a non-expansive 

mapping on CP (x) {x}  where x is a T-invariant point. Then there is a 

xo in PC (x) which is also T-invariant provided. 

(a) T: C ---> C 

(b) PC (x) is nonempty, starshaped and compact. 

(c) Either C is closed or (X, d) satisfies property ( * )  

Proof.  Let P be starcentre of ( )CP x , then (1 )p P (x)    Cx  for every 

cx p (x),   0 1   . We claim that T: ( )CP x  ( )CP x . 

 Suppose (X, d) satisfies property (* ) then by Lemma 5.2.1,

CP (x) C C   . So for Cy p (x) , we get Ty C as T: C --->C. 

 Suppose C is closed then  Cy (x)P  implies y C  leading to Ty 

C as T: C --->C. 

 Thus in both the cases, Ty C. Consider  

d(x, Ty)   =   (Tx, Ty)  (as x is a T-invariant point)  

C   d (x, y) (as T is non-expansive on P (x) {x})   

       =    d (x, C) 

       d (x, Ty). 

This give d (x, Ty) = d (x, C) i.e. Ty  CP (x) for Cy P (x)  and hence T: 

CP (x) ----> CP (x) . 
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 Let kn, 0   kn< 1 be a sequence of real numbers such that kn--->1 as 

n---> . Define Tn: CP (x) ) ---> CP (x) as n n nT y = k  Ty + (1-k ) p for every 

Cy p (x) . Since T maps Cp (x)  into CP (x)  for each n ( Cy p (x)  and T: 

CP (x) ----> CP (x)  imply Ty  Cp (x)  and CP (x)  being starshaped w.r.t. p 

we get n n Ck Ty + (1-k ) p P (x) ) . 

Also,  

d (T x, T y)    =   d (k Tx+(1-k )p, k Ty+(1-k )p)n n n n n n     

   d (k Tx, k )n nTy  

   d (k (Tx-Ty), 0) n  

<    d (Tx-Ty, 0) (as d is strictly monotone)  

=    d (Tx, Ty)  

c   d (x, y) (as T is non-expansive on P (x) {x}) 
 

 Hence Tnis non-expansive on (x) {x}CP   for each n. Since (x)CP  is 

compact and starshaped, Tnhas a unique fixed point, say,  xn for each n ( 

[6], Theorem 2) i.e. Tnxn = xn for each n. 

 Since (x)CP  is compact, <xn> has a convergent subsequence 

0x x P (x)
in C    . We claim that Txo=xo. 

 Consider x  T x  k (1 k ) p.
i i i i in n n n n     Taking limit as i---> , we 

get xo=xo 0 0(x x  implies T x
i in n T      as T is continuous on 

(x) {x}CP   i.e. 
0x P (x)C  is T-invariant. 
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 Since every normed liner space is a metric linear space with 

property (*) and the metirc induced by the norm is strictly monotone, we 

have: 

Corollary 5.2.1 [5] . Let T be a non-expansive linear operator on a 

normed linear space X. Let C be a T-invariant subset of X and x a T-

invariant point. If the set of best C-approximants to x is non-empty, 

compact and convex, then it contains a T-invariant point. 

Corollary 5.2.2 [15]. Let T be a non-expansive mapping on a normed 

linear space X. Let C be a T-invariant subset of X and x0 a T-invariant 

point in X. If D, the set of best C-approximants to xo is non-empty, 

compact and starshaped, then it contains a T-invariant point. 

Corollary 5.2.3  [16] . Let X be a normed linear space and T:X--->X a 

mapping. Let C be a subset of X such that C is T-invariant and let xo be a 

T-invariant point in X. If D, the set of best C-approximants to xo is non-

empty, compact and starshaped and T is 

(i) continuous on D 

(ii) 0x-y   d (x ,  C)  Tx- Ty  for x, y in D {x},    

then it contains a T-invariant point which is a best approximation to xo in 

C. 

Note: The continuity of T on D need not be assumed as it follows from 

(ii) 

 Since each p-norm generates a translation invariant metric d 

satisfying property ( * ) and is strictly monotine, we have: 
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Corollary 5.2.4  [9]. Let (E,  p) be a p-normed space, T:D-->E a non-

expansive mapping with a fixed point u E  and C a closed T-invariant 

subset of E such that T is compact on C. If P (u)C is starshaped, then there 

exists an element in P (u)C  which is also a fixed point of T. 

 In strictly convex metric spaces, we have the following result on 

invariant approximation: 

Theorem 5.2.2 [14]. Let (X, d) be a strictly convex metric space and T a 

non-expansive mapping on  CP x {x}  where x is a T-invariant point. 

Let C be a subset of X, :  C--->CT   and  CP x  be non-empty and 

starshaped with starcentre q. Then  CP x ={q} with Tq=q. 

Proof. Let  Cp q xP  . Then d (x, p) = d (x, q) = d (x, C). Since p q , 

strict convexity of the space implies d (x, W (p, q,  ) )< 

dist (x,C) and so  CW(p, q, ) x ,  0   1P      . Starshapedness of  CP x  

therefore implies p=q i.e.  CP x ={q}. Since X is convex, 
CP (x) C C   

(Lemma 3.2 [17]). So for  Cy ,P x  we get Ty C  as T: C --C. Consider 

 d (x, Ty) = d (Tx, Ty) (as x is a T-invariant point) 

     d (x, y)    (as T is non-expansive on  CP x {x} ) 

   = d (x, C) 

     d (x, Ty). 

This gives d (x, Ty) = d (x, C) i.e. T  Cy xP  for  Cy xP  and so  

T:  CP x ---->  CP x . Hence  CTq xP {q}  , i.e. Tq=q. 
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5.3 Fixed Points and - Simultaneous Approximation 

 Using a result of Beg and Azam [1] on fixed point of multivalued 

mappings, we give an application of a fixed point theorem to 

- Simultaneous approximation in convex metric spaces in this section. 

We start with a few definitions. 

Defintion 5.3.1.  A metric space (X, d) is said to be ε-chainable  (see e.g. 

[3]) if given x,  ,y X there is an ε-chain from x to y (i.e. a finite set of 

points x=z0, z1, z2,...,zn=y such that d (zi=1, zi)< ε for all i= 1,2, ..., n. 

Definition 5.3.2. A  mapping T:X --> CB(X) is called an (ε,  )- uniformly 

locally contractive mapping (where ε>0 and 0< <1) (see e.g.[3] if x, 

yϵX and d(x, y) < ε then H (Tx, Ty)  d (x, y) where H stands for 

Hausdorff metric on CB(x). 

 An application of a fixed point theorem to b.s.a. was given by Beg 

and Shahzad [2]. Using the following simplified version of a result due to 

Beg and Azam [1]:  

Lemma 5.3.1 Let (x,d) be a complete ε-chainable metric  

space T:X -->CB(X) satisfies the condition: 

 0<d(x, y) <ε implies H (Tx, Ty) <kd (x, y) 

where k[0,1[, then there exists a fixed point of T. 

 We now extend the result of [2] to ε-s.a. 

Theorem 5.3.1[12].  Let (x, d) be an ε-chainable convex  

metric space satisfying condition (I) and T:X -->CB (X) be  

a multivalued mapping. Let  GCB(X). For FCB(X), if  

centG(F,ε) is compact, starshaped, T-invariant and T is  

(i) continuous on centG (F,ε) and 

(ii) d(x, y)   H(F, G) implies H (Tx, Ty)   d (x, y) for 

all    x, y    in    centG(F,ε)F ,  then centG(F,ε) 

 contains a T-invariant point. 
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Proof.  The proof of this theorem is a minor modification  

of the one given by beg and Shahzad [3] for b.s.a. in 

 normed linear spaces. 

 Let p be the starcentre of centG(F,ε) then  

 (x, p, )  W centG(F,ε) for each xcentG(F,ε). Let <kn> be a  

sequence of  real numbers with 0 1 nk converging to 1. 

Define Tn: centG(F,ε) --->CBcentG(F,ε)) as 

 Tnx = W(Tx, p, kn) = 
y T

W (y, p, kn) for all x in centG(F,ε). 

 Clearly Tn is well defined as for g0centG(F,ε)  we have 

dF(W( 0Tg , p, kn)) = dF (W( 0g , p, kn)) as 0g centG(F,ε) is T-invariant 

 D(F,G)+ε as centG(F,ε)  being starshaped, 

   W (g0, p, kn) centG(F,ε) 

i.e. for g0 centG(F,ε), Tng0= W(Tg0, p, kn)CB (centG(F,ε) ). 

 Using condition (I), we have 

 H(Tnx, Tny) = H(W (Tx, p, kn), W(Ty, p, kn)) 

   kn H (Tx, Ty) 

   kn d (x, y) 

for all d(x, y)   H (F, G) which implies that Tn is a   

(H(F, G), kn) uniformly local contraction for each n=1, 2, 3, 

...... it follows by Lemma 5.3.1 that each Tn has a fixed  

point, say, xn. Since centG(F,ε) is given to be compact, 

{xn} has a convergent subsequence   --->z and so  

continutiy of T on centG(F,ε)   implies T    ---> Tz. 

     ϵ      =W(   , P,    ) 

Since kn2--->1, zTz (as     --->1 implies zW (Tz, p, 1) = Tz). 
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