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MODULE* – 4 

ON  -SIMULTANEOUS APPROXIMATION AND BEST 

SIMULTANEOUS CO-APPROXIMATION 

 This module deals with  -Simultaneous Approximation and Best 

Simultaneous Co-Approximation. The chapter has been divided into two 

sections. In the first section we discuss  -simultaneous approximation. 

The problem of best simultaneous opprozined (b.s.a.) is concerned with 

approximating  simultaneously any two elements
1x ,

2x of a space X by the 

elements of a subset A of X. More generally, if a set of elements B is given 

in X, one might like to approximate all the elements of B simultaneously 

by a single element of A. This type of problem arises when a function 

being approximated is not known precisely, but is known to belong to a 

set. C. B. Dunhan [3] seems to have been the first who studied the 

problem of b.s.a. in normed linear spaces. R.C. Buck [2] studied the 

problem of  -approximation which reduces to the problem of best 

approximation for the particular case when  =0. In this section, we 

discuss  -simultaneous approximation for any two elements 1x , 
2x and for 

a non-empty bounded subset F of a convex metric space (X, d) with 

respect to a non-empty subset G of X. Defining  -simultaneous 

approximation map  
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( )GP : 2GX X   by 
( ) 1 2 0 1 0 2 0( , ) { : ( , ) ( , ) }GP x x g G d x g d x g r      where r=inf (d (

1x , g) + d ( 2x , g) : gG} and we prove the upper semi-continuity of the 

map ( )GP . We also prove the convexity, boundedness, closeness and 

sharshapedness of the set ( ) 1 2( , )GP x x  and of ( )GP (F) in the first section. 

 The second section of this module deals with Best Simultaneous Co-

approximation A new kind of approximation, called best co-approximation 

was introduced in normed linear spaces by C. Franchetti and M. Furi [4] 

in 1972. This study was taken up later by T.D. Narang, P.L. Papini, 

Geetha S. Rao, Ivan Singer, S.P. Singh and few others (see [7], [8]. 

Generalizing the concept of best approximation, Geetha S. Rao and R. 

Sarvanan studied the problem of best simultaneous co-approximation in 

normed liner spaces in [10]. In this section, we study the problem of best 

simultaneous co-approximation in convex metric linear spaces and convex 

metric spaces thereby extending some of the results proved in [10] We 

have also given some properties of the set ( , )GS x y  i.e. the set of all best 

simultaneous co-approximations to x, y in G. We have proved that for a 

convex metric space (X, d) and G a convex subset of X, the set ( , )GS x y  is 

convex.  We have also proved the upper semi continuity of the mapping 

:{( , ) : , } 2G

GS x y x y X   in totally complete metric linear spaces (a notion 

introduced by T.D. Narang [9]). 

4.1  -Simultaneous Approximation 

 This section deals with  -simultaneous approximation in metric 

spaces. In this section, we discuss  -simultaneous approximation of any 
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two elements x1, x2 and then of a non-empty bounded subset F of a convex  

metric space (X, d) with respect to a non-empty subset G of X. 

 To start with, we recall a few definitions. 

Definition 4.1.1.  Let (X, d) be a metric space and G a non-empty subset of 

X. An element g0G is said to-be (i) an element of  -approximation  ( -a.) 

to xX if  

 d(x, 0g ) d (x, g) +   for all gG and  >0 

 i.e. d (x, 0g )   inf {d (x, g) : gG} +   

 The set of all  -approximations to xX from G is denoted by 

( ) ( )GP x . 

(ii) an element of  -simultaneous approximation ( -s. a.) to 1 2 ,  x x   

X from G if d ( 1x , 0g ) + d ( 2x , 0g )   r +  

where r= inf { d( 1x , g) + d ( 2x , g) : gG} 

 The set of all  -smultaneous approximations to 1x  and 2x  from G 

will be denoted by ( ) 1 2( , )GP x x . 

Defintion 4.1.2.  Let (X, d) be a metric space, G a non empty subset of X 

and F a non-empty bounded subset of X. For x in X, let 

 ( )Fd x  = Sup {d (y, x) : yF} 

 D (F, G)  = inf ( ( )Fd x  : xG}, and 

 ( )GP (F) = 0 0{ : ( ) ( , ) }Fg G d g D F G    for  >0 
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   = 
 

  0{ : sup inf sup ( , ) }
g Gy F y F

g G d y g . 

 

 An element 
0 ( ) ( )Gg P F is called  -simultaneous approximation ( -

s.a.) of F with respect to G. 

 One of the advantages of considering the sets ( ) 1 2( , )GP x x and 
( ) ( )GP F

with ε>0, instead of the sets 
1 2( , )GP x x  and ( )GP F  respectively is that the 

sets ( ) 1 2( , )GP x x and 
( ) ( )GP F are always non-void for ε>0. 

 The problem of ε-s.a: is equivalent to the problem of minimzing 

certain functional as shown below:  

Lemma 4.1.1  [12]. If G is any subset of a metric space (X, d) and F a 

bounded subset of X. Then the functional  :G-->R defined by   (g) = 

sup
f F

d (f , g ) is continuous. 

Proof.  Let ε>0 be given. For any   fF and g, g'G, we have d (f, g) d (f, 

g') +d (g' g) and so sup
f F

   d(f, g)  sup
f F

sup d (f, g') + d (g', g)  

i.e.  : (g) -  (g') d (g', g) 

 Inerchanging g and g', we get   (g') -  (g) d (g, g')  and so 

( ) ( ') ( , ')g g d g g   . Therefore, if d (g, g') <ε then ( ) ( ')g g  <ε and 

consequently   is continuous. 

 If we take  ' (g) =   (g) +ε then inf
g G

 ' (g) inf
g G

  g) +ε. 

So a 0g G satisfying  ' ( 0g )= inf
g G

 ' (g) is an  ε-s.a. to F 

Thus, the problem of ε-s.a. is the problem of minimizing the functional 
  ' on G. 

 The following lemma deals with the boundedness and closedness of 

the set ( )( )GP F . 

Lemma 4.1.2. [12] The set ( )( )GP F is bounded and is a closed subset of G if 

G is closed. In addition, ( )( )GP F , is compact if G is compact. 
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Proof.  Let 
0g , 

0g 
( )( )GP F .Then 

 d (
0g ,

0g  )   d (
0g , y) + d (y, 

0g  ) for every yF 

     dF (
0g ) + dF (

0g  ) 

     D (F, G) + +D (F, G)+ +D (F, D) +  as 
0g , 

0g 

( )( )GP F  

   = 2 (D (F, G) + ). 

and so ( )( )GP F is bounded. 

 Suppose G is closed. Let 
0g  be a limit point of ( )( )GP F .Then there 

exists a sequence < ( )

0

ng > in ( )( )GP F  such that < ( )

0

ng >-->
0g . Now ( )

0

ng 

( )( )GP F => Fd  ( ( )

0

ng )D (F, G) +  for all  n  

 lim Fd  ( ( )

0

ng )D (F, G) + )=> Fd  ( 0g )D (F, G) + => 0g 
( )( )GP F  as 

G being closed. 0g G. Therefore ( )( )GP F  is a closed subset of G. If the set 

G is compact then the set ( )( )GP F  is compact as closed subset of a 

compact set is compact. 

 If we take F = 1 2( , )x x , we have: 

Corollary 4.1.1  [12]. The set ( ) 1 2( , )GP x x  is bounded and a closed subset 

of G if G is closed. In addition, ( ) 1 2( , )GP x x is compact if G is compact. 

 The following result shows the convexity of the set  ( )( )GP F  
in 

convex metric spaces. 

Propostion 4.1.1. [14]. For any convex set G in a convex metric space (X, 

d), the set ( )( )GP F is convex. 
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Proof.  Let 
0g , 

0g 
( )( )GP F . Then dF (

0g )   D (F, G) + ε and 
Fd      (

0g  )

D (F, G)+ ε. For any fF, consider d (f, W (
0g ,

0g  ,  )  d     (f,
0g ) (1- ) 

d (f, 
0g  ). This implies 

 
Fd  (W (

0g ,
0g  ,  ) = sup

f F

d (f, W (
0g ,

0g  , ) ) 

       sup
f F

 d (f, 
0g ) + (1- ) sup

f F

 d (f, 
0g  ) 

     = Fd  (
0g ) + (1- ) sup d (f, 

0g  ) 

        (D (F,G) + ) + (1- ) (D (F,G) + ) 

     = D (F , G) + , 

Where W ( 0g ,
0g  , )  G by the convexity of G, implying that  W      ( 0g ,

0g  ,  )  is   -s.a. in G to F and so the set ( )( )GP F is convex. 

 This proposition shows that if G is a convex subset of a convex 

metric space (X, d) and if g0,g0' are   -s.a. in G to F then W ( 0g ,
0g  , ) is 

also   -s.a. in G to F for every I. 

 For F = { 1 2,x x }, we get: 

Corollary 4.1.2 [15] For  any convex set G in a convex metric space (X, d), 

the set ( ) 1 2( , )GP x x  is convex. 

 The above corollary shows that in a convex metric space (X, d) if 0g ,

0g are ε-simultaneous approximations to x1 and x2 by elements of a convex 

set, then W   ( 0g ,
0g  , )is also  -s.a. to x1 and x2 for every I. 

 Next result proves the starshapedness of the set PG( )(F) 
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Proposition 4.1.2  [11]. In a convex metric space (X, d), if G is starshaped 

with respect to 
0g  and F a bounded subset of X then ( )( )GP F is also 

starshaped with respect to 
0g provided 0 ( )( )Gg P F . 

Proof.  Let y ( )( )GP F . Then dF (y)   D(F, G) + . Since G is starshaped 

with respect  to 
0g , W (y, 

0g ,  )G for I. 

 We claim that W (y, 
0g ,  )  ( )( )GP F for all I. 

Consider  

 dF(W(y, 
0g , ) = sup

f F

 d (f, W (y, 
0g , ) ) 

     sup
f F

 d (f, y) + (1- ) sup
f F

 d (f, 0g ) 

    = Fd (y) + (1- ) dF ( 0g ) 

       (D (F,G) + ) + (1- ) (D (F,G) + ) 

    = D (F , G) + . 

Hence 

 dF(w (y, 0g ,  )   ( (F,G) +  

implying that W(y, 0g ,  )  ( )( )GP F  for all y  ( )( )GP F and I i.e. set 

( )( )GP F is starshaped with respect to 0g . 

 

 For F = 1 2( , )x x , we get: 

Corollary 4.1.3 [11]. In a conved metric space (X, d) if G is starshaped 

with respect to 0g  then ( ) 1 2( , )GP x x , is also starshaped with respect to g0 if 

0g 
( ) 1 2( , )GP x x . 
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 Let CB (X) be the familyof non-empty closed and bounded subsets of 

X. Let H be a Hausdorff metric  on CB (X) i.e. for  

A, BCB(X, 

 H(A,B) = Max (sup
a A

 d (a,B),  sup
b B

  d (b,A) 

 
 Sastry and Naidu [12], and Govindrajulu [5] proved that under 

certain conditions, the best simultaneous approximation operator (not 

necessarily single-valued) is upper semi-continuous. The following result 

deals with the upper semi-continuity of the ε-simultaneous approximation 

map: 

Proposition 4.1.3 [12]. If G is a compact subset of a metric space (X, d) 

then the ε-simultaneous approximation map PG( ):X-->2G is upper semi-

continuous i.e. the set K={FCB(X) : PG( ) (F) N   } is closed for every 

closed set N in X. 

Proof.  Let {Fn} be a sequence in K converging to FCB (X). 

Then there exists a sequence <+xn> in G such that xnPG( ) (Fn) N  for 

each n and so dF (xn) D (Fn, G) + . Consider  

  dF (xn)  H (F, xn) +dF (xn) 

   H (F, Fn)+ D (Fn, G) +     (4.1.1) 

 Since G is compact, there exists a subsequence < x
in > of <xn> such 

that  < x
in > --> 0x x0and so (4.1.1) implies  

 dF(x0)   D(F,G)  +  as H (F, Fn) -->0 
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i.e. 
0x 

( )( )GP F . 

 Since< x
in >N and N is closed, 

0X N. Consequently   

0X 
( )( )GP F N  i.e. FK implying that the map PG( )is upper semi-

continuous. 

 The following result deals with the upper semi-continuity of the ε-

simultaneous approximation map ( ) 1 2( , )GP x x : 

Proposition 4.1.4  [11]. If G is a compact subset of metric space (X, d), 

then the  ε-simultaneous approximation map   

( )GP  : XxX-->2G is upper semi-continuous i.e. the set B={ ( 1 2,x x )XxX:

( ) 1 2( , )GP x x N  } is closed for every closed set N G. 

Proof.   The proof of Proposition 4.1.4 follows from Proposition 4.1.3 by 

taking F=(x1, x2). However, an independent proof is as under: 

 Let ( 1x (0)
, 2x (0)) be a limit point of the set B. Then there exists a 

sequence ( 1x (n)
, 2x (n)) > in B converging to ( 1x (0)

, 2x (0)) B, there exists a 

sequence <gn> in G such that 

 ( ) ( )

( ) 1 2 ( , )n n

n Gg P x x N , n=1, 2,3 ... 

Consider 

d ( 1x (0)
, gn)+d ( 2x (0), gn)   d (0)

1(x , 
( )

1 )nx  +d ( ( )

1

nx , gn)+d ( (0)

2x , ( )

2

nx ) + 

      d ( ( )

2

nx ,gn) 

      d (0)

1(x , ( )

1 )nx  +d ( (0)

2x , ( )

2

nx ) +inf {d ( ( )

1

nx , g) 

     + d ( ( )

2

nx , g : gG} + . 
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      d (0)

1(x , ( )

1 )nx +d ( (0)

2x , ( )

2

nx )+ 

inf {d (0)

1(x , ( )

1 )nx +d ( (0)

1x , g) +d( ( )

2

nx ,
(0)

2x )+ 

d ( (0)

2x , g) : gG} +  

    = 2 {d ( (0)

1x , g) + d ( (0)

2x , g) : gG} + . 

This implies 

lim [d( (0)

1x , gn) +d ( (0)

2x , gn)]  inf {d( (0)

1x , g) : gG} +  (4.1.2)  

 Since G is compact, there exists a subsequence <
ing > of <gn) such 

that <
ing >--> g0 and so (4.1.2) implies  

d( (0)

1x , +
0g )+d ( (0)

2x
)
, g0) inf {d( (0)

1x , g)+d ( (0)

2x , g):gG} +  

i.e. g0PG( )(x1
(0), x2

(0)). 

 Since <gn>N and N is closed, 0g N. Consequently,  

0g PG( )
(0) (0)

1 2( , )x x N  i.e. (0) (0)

1 2( , )x x B. Thus B is closed and so PG( ) is 

upper semi-continuous. 

 The next result deals with the structure of the sets  

PG( ) 
(0) (0)

1 2( , )x x . 

Proposition 4.1.5  [11]. Let G be a non-empty compact subset of metric 

space (X, d) and PG( ): XxX-->2G(  the collection of all bounded subsets 

of G) be the ε-simultaneous approximation map of XxX into G defined by 

PG( ) (x1, x2)={ g0G:d(x1, g0) (x0, g0)+ }. 

Where r=inf {d(x1, g) +d (x2, g) : gG}. 
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Then the set PG( ) (AxA) = {PG( )(x1, x2): x1, x2  A} is compact for any 

copact subset A of X. 

Proof.  Let <
ing > be any sequence in PG( ) (AxA)G. Since G is compact, 

there exists a subsequence <gn> of <gn> such that <gn𝒾>-- > og G  

 Since <
ing > is a sequence in PG( ) (AxA), there exist      

< ( ) ( )

1 2x ,xi in n in AxA such that for each ni, 

 
ing  PG( ) ( ( ) ( )

1 2x ,x )i in n  

i.e. d ( ( )

1x in , 
ing ) +d ( ( )

2x in , 
ing )  inf {d ( ( )

1x in , g) +d ( ( )

2x in , g): gG}+                                                                                                              

(*) 

Since AxA is compact < ( ) ( )

1 2x ,x )i in n > has a subsequence  

( ) ( ) (0) (0)

1 2 1 2x ,x (x ,x ) AxA
i ij j

n n
     . Since  

inf {d (
( )

1x
i j

n
, g) +d (

( )

2x
i j

n
, g) : gG}--> inf {d ( (0)

1x , g) +d ( (0)

2x , g): gG} 

and 

d ( (0)

1x ,g
i j

n ) + d ( (0)

2x ,g
i j

n )   d( (0)

1x ,
( )

1x
i j

n
)+d(

( )

1x
i j

n
,g

i j
n )+ 

     d( (0)

2x ,
( )

2x
i j

n
)+d (

( )

2x
i j

n
,g

i j
n ) 

       d( (0)

1x ,
( )

1x
i j

n
)+d(

( )

1x
i j

n
,g

i j
n )+ 

    inf {d (
( )

1x
i j

n
, g) +d (

( )

2x
i j

n
, g) : gG}+  (by (*) ). 

we have 

lim [d ((
( )

1x
i j

n

,g
i j

n )+d (
( )

1x
i j

n

,g
i j

n ) ]  inf (d { (0)

1x ,g) +d ( (0)

2x , g) :gG} +  

i.e. d ( (0)

1x , 
0g ) + d ( (0)

2x ,
0g ) inf (d { (0)

1x ,g) +d ( (0)

2x , g) : gG} +  

i.e. (0) (0)

0 ( ) 1 2( , )Gg P x x 
( )GP  )(AxA). Hence ( )GP  (AxA) is compact. 
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4.2 Best Simultaneous Co-Approximation 

 This section deals with the problem of best simultaneous co-

approximation in metric linear spaces and convex metric spaces. 

 To start with, we recall a few definitions.  

Definition 4.2.1.  Let (X, d) be a metric space and G a non-empty subset  

of X. An element 
0g g is called a best simultaneous co-approximation  to 

x, yX from G if 

 
0d (g , g) max {d (x, g) } d (y, g)  for all g G . 

 The set of all best simultaneous co-approximations to x, y   X from 

G is denoted by SG(x,y). G is called an existence set if    SG(x,y) contains at 

least one element, G is called a uniqueness set if SG(x,y) contains atomst 

one element and G is called an existence and uniqueness set if SG(x,y) 

contains exactly on element. 

Definition 4.2.2. A metric linear space (x,d) is said to be totally complete  

[6] if it has the property that its d-bounded closed sets are compact. 

 Every totally complete metric linear space is finite dimensional but a 

finite-dimensional metric linear space need not be totally complete [6]. 

However, finite dimensional normed linear spaces are totally complete. 

 Some properties of the set SG(x,y) are as under:  

Lemma 4.2.1. If G is a subset of a metric space (x,d) and x,yX, then 

(a)  if 0g SG(x,y) then for every gG 

 d (x, 0g )   2 max { d (x, g) , d (y, g) } 

 d (y, 0g )   2 max { d (x, g) , d (y, g) } , 

(b) SG(x,y)   is bounded, 

(c) SG(x,y)   is closed if G is closed.  
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Proof. 

(a)  is easy to verity 

(b) Let 
0g SG (x,y). Then by part (a), we have  

d (x, 
0g )   2 max { d (x, g) , d (y, g) } 

for all gG and so  

 d (
0g , x)   2  inf  max

g G
 { d (x, g) , d (y, g) } 

     2 d (x, y ; G) . 

Then for  arbitrary 
0g , 

0g SG (x, y) 

 d (
0g ,

0g  )    d (
0g , x)  + d (x, 

0g  ) 

     4d (x,y;G) 

implying thereby that SG (x, y) is bounded. 

(c) Let {gn} be any sequence of element of SG (x, y) such  

that  {gn} --> 0g . 

Since G is closed, 0g G. For any  gG, 

Consider 

 d ( 0g , g)     d ( 0g , gn)  + d (gn, g) 

      ( 0g , gn)  +  max { d (x, g), d(y, g) } 

     o +  max { d (x, g), d(y, g) } as n  . 

Thus  0g SG (x, y) and so SG (x, y) is closed.  

 For normed linear spaces Lemma 4.2.1 was proved in [13] – 

proposition 3.1. 

Note : The following results can be easily verified : 

(i) For 0g SG (x, y), max d ( 0g , x) ,d ( 0g , y)}   2max{d (x,g),d(y,g)}  

(ii) For 0g PG (x, y),d ( 0g , g)     2 max  {d (x,g),d(y,g)} 

(iii) For 0g PG (x),  d ( 0g , g)     2 d (x,g) 

(iv) For 0g RG (x),  d ( 0g , x)     2d (x,g) 



 

 e-learning Mathematics  
 

 for all gG. 

(v) For xX\G and 
0g G  if g0 is a best co-approximation to x from 

G, then go is a best simultaneous co-approximation to x, y from G, for 

every yX\G. But, if go need not be a best co-approximation to either x 

ory. Therefore, RG(x) ( ) ( , ).G GR y S x y   

 It was proved in [1] that if G is a convex subset of a convex metric 

space (X,d), x, yX and 1 2,g g  are best simultaneous approximations to x 

and y by the elements of G then W( 1 2,g g , )G is also a best simultaneous 

approximation to x, y. The following theorem shows that the same is true 

in case of best simultaneous co-approximation: 

Theorem 4.2.1. [14]. If G is a convex subset of a convex metric space (X, 

d) and x, yX. Then SG(x, y) is convex. 

Proof.  Let 1 2g , (x,y) and [0,1].Gg S    

Then 1 2 1 2W(g ,  g , ) G as g ,  g G    and G is a convex set. 

Consider 

 1 2 1 2d(W(g ,  g , ), )  d(g ,g ) + (1- ) d (g ,  g)g    

1 2 max {d(g ,g) , d (g ,  g)}   (4.2.1) 

Since 1 2 Gg , g S (x,y),  

 1d(g ,  g)  max {d(x,g) , d (y,  g)}, and     (4.2.2) 

 2d(g ,  g)  max {d(x,g) , d (y,  g)}.  
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Now (4.2.1) and (4.2.2) imply 

 1 2d(W(g ,  g , ), )  max {d(x,g) , d (y,  g)}g   

for every g G  and so 1 2W(g ,  g , ) G  S (x,y).  

 It was proved by Diaz and McLaughlin [20] that for a normed linear 

space X, a finite dimensional subspace G of X and x, y X/G,  if 0g G  is 

a best approximation to (x_y)/2 from G, then g0 is not a best simultaneous 

approximation to x, y from G. However, in case of best co-approximation 

we have: 

Theorem 4.2.2 [14]. Let (X, d) be a convex metric space, G a subset of X, 

x, y X/G , 0g G  and 0    1. If g0 is a best co-approximation  to W 

(x, y, ) for some  , then  g0 is a best simultaneous co-approximation to x, 

y from G.  

Proof.  Assume that g0 is a best co-approximation to W (x, y, ) for some 

[0,1].  Then for every g G  it follows that 

 2d (g ,  g)     d(W(x,y, ),g)  

     d (x,g) + (1- ) d (y, g)   

    max {d (x, g), d (y, g)}.  

 Thus g0 is a best simultaneous co-approximation to x, y for G. 

Remark.  For normed linear spaces this result was proved in [10] – 

Theorem 4.4 

 For a convex metric linear space (X, d) and x, y belonging to convex 

set G in X,  x + (1- )y, 0    1 is a best simultaneous co-

approximation to x, y from G. As for any g G  



 

 e-learning Mathematics  
 

d( x +(1- ) y,g)  d (x,g) + (1- ) d (y,g)     (by the convexity of (X, d)  

 max {d (x, g), d (y, g)}  

Also every element belonging to SG (x, y) is of the form  

x +(1- ) y,   0 1.     

 Hence for a convex metric linear space (X, d) and a convex subset G 

of X, if x, y G  then 

 ( , ) = { x (1- ) y :  0    1}GS x y      . 

In the next theorem, we list some more properties of the set ( , )GS x y  in 

metric linear spaces. 

Theorem 4.2.3  [14]. Let (X, d) be a metric linear space , G a subspace of 

X and x, y X . Then the following results hold: 

(i) (x + g, y+g) = (x, y) + g for g G.G GS S   

(ii) ( x, y) = (x, y)  for x, y G, G GS S R      

The prof of Theorem 4.2.3 is a minor modification of that of 

Proposition 3.3 given in [10], for normed linear spaces. 

 The next result gives another property of the set ( , )GS x y  in totally 

complete metric linear spaces. 

Theorem 4.2.3  [14]. Let (X, d) be a  totally complete metric linear space , 

G a  non-empty closed subset of X.  Then ( , )GS x y  is compact.  
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Proof. Since Sc(x, y) is closed and bounded (lemma 4.21) and the space is 

totally complete. SG (x, y) is compact.  

 The following theorem proves the upper semi-continuity of the 

mapping SG for totally complete metric linear spaces: 

Theorem 4.2.5  [62] Let (X, d) be a  totally complete metric linear space 

(X, d). Then the set-valued map { , )GS x y : x, y }X --->2Gis upper semi-

continuous. 

Proof.  Let A be a closed subset of G, we have to show that  

B={(x,y) : x, y ,  (x,y) A }GX S     is a closed subset of X. Let <(xn, 

yn)> be a sequence in B such that <(xn, yn)>---> (x0, y0) for some (x0, y0) 

X . Since (x ,y ) An n   is non-empty, choose  

g (x ,y ) An G n nS   for each n. 

 Consider the set C=closure of the set {g1, g2, ...., gn, ...}. Using Lemma 

4.2.1 (a) , it is easy to see that the set C is a bounded set. Since C is a 

closed and bounded subset of the totaly complete space G, C is compact. 

Therefore the sequecne <gn> has a subsequence {g }
kn converging to g0. 

Since A is closed, 0g A . 

 Now to prove that B is closed, it is sufficient to prove that 

0 0 0g (x , y )GS . For every g G . 

 d (g, g0) 0   d (g,  g ) + d ( g , )
k kn n g  

   0    max {d (x , g), d (y , g)} + d (g , )
k pk kn n n g  
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   0 0   max {d (x , g), d (y , g) + 0 as n .   

Therefore 0 0 0g (x ,y ) AGS   and so (x0, y0) B i.e. B is closed  
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