$MODULE^* - 4$

ON \mathcal{E} -SIMULTANEOUS APPROXIMATION AND BEST SIMULTANEOUS CO-APPROXIMATION

This module deals with \mathcal{E} -Simultaneous Approximation and Best Simultaneous Co-Approximation. The chapter has been divided into two sections. In the first section we discuss \mathcal{E} -simultaneous approximation. The problem of best simultaneous opprozined (b.s.a.) is concerned with approximating simultaneously any two elements x_1, x_2 space X by the elements of a subset A of X. More generally, if a set of elements B is given in X, one might like to approximate all the elements of B simultaneously by a single element of A. This type, of problem arises when a function being approximated is not known precisely, but is known to belong to a set. C. B. Dunhan [3] seeps to have been the first who studied the problem of b.s.a. in normed linear spaces. R.C. Buck [2] studied the problem of \mathcal{E} -approximation which reduces to the problem of best approximation for the particular case when $\mathcal{E}=0$. In this section, we discuss \mathcal{E} -simultaneous approximation for any two elements x_1 , x_2 and for a non-empty bounded subset F of a convex metric space (X, d) with respect to a non-empty subset G of X. Defining *E*-simultaneous approximation map

 $P_{G(\varepsilon)}: X \times X \to 2^G$ by $P_{G(\varepsilon)}(x_1, x_2) = \{g_0 \in G: d(x_1, g_0) + d(x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_1, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_2, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_2, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon\}$ where $\mathbf{r} = \inf (\mathbf{d} (x_2, g_0) \le r + \varepsilon)$ where $\mathbf{r} = \inf (\mathbf{d} (x_2, g_0) + \mathbf{d} (x_2, g_0) \le r + \varepsilon$ and $\mathbf{d} (x_2, g_0) \le \mathbf{d} (x_2, g_0) \le \mathbf$

The second section of this module deals with Best Simultaneous Coapproximation A new kind of approximation, called best co-approximation was introduced in normed linear spaces by C. Franchettiand M. Furi [4] in 1972. This study was taken up later by T.D. Marang, P.L. Papini, Geetha S. Rao, Ivan Singer, S.P. Singh and fer others (see [7], [8]. Generalizing the concept of best approximation, Geetha S. Rao and R. Sarvanan studied the problem of best simultaneous co-approximation in normed liner spaces in [10]. In this section, we study the problem of best simultaneous co-approximation in convex metric linear spaces and convex metric spaces thereby extending some of the results proved in [10] We have also given some properties of the set $S_G(x, y)$ i.e. the set of all best simultaneous co-approximations to x, y in G. We have proved that for a convex metric space (X, d) and G a convex subset of X, the set $S_G(x, y)$ is convex. We have also proved the upper semi continuity of the mapping $S_G:\{(x, y): x, y \in X\} \rightarrow 2^G$ in totally complete metric linear spaces (a notion introduced by T.D. Narang [9]).

4.1 *E*-Simultaneous Approximation

This section deals with ε -simultaneous approximation in metric spaces. In this section, we discuss ε -simultaneous approximation of any

two elements x_1, x_2 and then of a non-empty bounded subset F of a convex metric space (X, d) with respect to a non-empty subset G of X.

To start with, we recall a few definitions.

Definition 4.1.1. Let (X, d) be a metric space and G a non-empty subset of X. An element $g_0 \in G$ is said to-be (i) an element of \mathcal{E} -approximation (\mathcal{E} -a.) to $x \in X$ if

$$d(x, g_0) \le d(x, g) + \varepsilon \text{ for all } g \in G \text{ and } \varepsilon > 0$$

i.e.
$$d(x, g_0) \le \inf \{ d(x, g) : g \in G \} + \varepsilon$$

The set of all \mathcal{E} -approximations to $x \in X$ from G is denoted by

 $P_{G(\varepsilon)}(x)$.

(ii) an element of ε -simultateous approximation (ε -s. a.) to $x_1, x_2 \in X$ from G if d (x_1, x_0) + d $(x_2, g_0) \leq r + \varepsilon$ where r= inf { d (x_1, g) + d (x_2, g) : g \in G}

The set $f(x_1, x_2)$ -smultaneous approximations to x_1 and x_2 from G will be denoted by $P_{G(\varepsilon)}(x_1, x_2)$.

Definition 4.1.2. Let (X, d) be a metric space, G a non empty subset of X and F a non-empty bounded subset of X. For x in X, let

$$d_{F}(x) = \sup \{ \mathbf{d} (\mathbf{y}, \mathbf{x}) : \mathbf{y} \in \mathbf{F} \}$$

$$\mathbf{D} (\mathbf{F}, \mathbf{G}) = \inf (d_{F}(x) : \mathbf{x} \in \mathbf{G} \}, \text{ and}$$

$$P_{G(\varepsilon)}(\mathbf{F}) = \{ g_{0} \in \mathbf{G} : d_{F}(g_{0}) \le D(F, \mathbf{G}) + \varepsilon \} \text{ for } \varepsilon > \mathbf{G} \}$$

$$= \{g_0 \in G : \sup_{y \in F} \leq \inf_{g \in G} \sup_{y \in F} d(y,g) + \varepsilon\}.$$

An element $g_0 \in P_{G(\varepsilon)}(F)$ is called ε -simultaneous approximation (ε -s.a.) of F with respect to G.

One of the advantages of considering the sets $P_{G(\varepsilon)}(x_1, x_2)$ and $P_{G(\varepsilon)}(F)$ with $\varepsilon > 0$, instead of the sets $P_G(x_1, x_2)$ and $P_G(F)$ respectively is that the sets $P_{G(\varepsilon)}(x_1, x_2)$ and $P_{G(\varepsilon)}(F)$ are always non-void for $\varepsilon > 0$.

The problem of ε -s.a: is equivalent to the problem of minimzing certain functional as shown below: Lemma 4.1.1 [12]. If G is any subset of a metric space (X, d) and F a bounded subset of X. Then the functional ϕ : A defined by ϕ (g) = $\sup_{f \in F} d(f, g)$ is continuous.

Proof. Let $\varepsilon > 0$ be given. For any fer and g, $g' \in G$, we have d $(f, g) \leq d(f, g') + d(g', g)$ and so $\sup_{f \in F} d(f, g) \leq \sup_{f \in F} \sup d(f, g') + d(g', g)$ i.e. $\phi: (g) - \phi(g') \leq d(g', g)$

Inerchanging g and g', we get $\phi(g') - \phi(g) \le d(g, g')$ and so $|\phi(g) - \phi(g')| \le d(g, g')$. Therefore, if d (g, g') < ϵ then $|\phi(g) - \phi(g')| < \epsilon$ and consequently ϕ is continuous.

If we take $\phi'(g) = \phi(g) + \varepsilon$ then $\inf_{g \in G} \phi'(g) \inf_{g \in G} \phi(g) + \varepsilon$. So a $g_0 \in G$ satisfying $\phi'(g_0) = \inf_{g \in G} \phi'(g)$ is an ε -s.a. to F

Thus, the problem of ϵ -s.a. is the problem of minimizing the functional ϕ' on G.

The following lemma deals with the boundedness and closedness of the set $P_{G(\varepsilon)}(F)$.

Lemma 4.1.2. [12] The set $P_{G(\varepsilon)}(F)$ is bounded and is a closed subset of G if G is closed. In addition, $P_{G(\varepsilon)}(F)$, is compact if G is compact.

Proof. Let $g_0, g_0' \in P_{G(\varepsilon)}(F)$. Then

$$d(g_0, g_0') \leq d(g_0, y) + d(y, g_0') \text{ for every } y \in F$$

$$\leq d_F(g_0) + d_F(g_0')$$

$$\leq D(F, G) + \varepsilon + D(F, G) + \varepsilon + D(F, D) + \varepsilon \text{ as } g_0, g_0' \in F$$
(F)

 $P_{G(\varepsilon)}(F)$

 $= 2 (D (F, G) + \varepsilon).$

and so $P_{G(\varepsilon)}(F)$ is bounded.

Suppose G is closed. Let g_0 be a limit point of $P_{G(\varepsilon)}(F)$. Then there exists a sequence $\langle g_0^{(n)} \rangle$ in $P_{G(\varepsilon)}(F)$ such that $\langle g_0^{(n)} \rangle \rangle \langle g_0$. Now $g_0^{(n)} \in P_{G(\varepsilon)}(F) = \rangle d_F(g_0^{(n)}) \leq D(F, G) + \varepsilon$ for all n $= \rangle \lim d_F(g_0^{(n)}) \leq D(F, G) + \varepsilon) = \rangle d_F(g_0) \leq D(F, G) + \varepsilon = \rangle g_0 \in P_{G(\varepsilon)}(F)$ as G being closed. $g_0 \in G$. Therefore $P_{G(\varepsilon)}(F)$ is a closed subset of G. If the set G is compact then the set $P_{G(\varepsilon)}(F)$ is compact as closed subset of a compact set is compact.

If we take $F = (x_1, x_2)$, we have:

Corollary 4.1.1 [12]. The set $P_{G(\varepsilon)}(x_1, x_2)$ is bounded and a closed subset of G if G is closed in addition, $P_{G(\varepsilon)}(x_1, x_2)$ is compact if G is compact.

The following result shows the convexity of the set $P_{G(\varepsilon)}(F)$ in convex metric spaces.

Propostion 4.1.1. [14]. For any convex set G in a convex metric space (X, d), the set $P_{G(\varepsilon)}(F)$ is convex.

Proof. Let $g_0, g_0' \in P_{G(\varepsilon)}(F)$. Then $d_F(g_0) \leq D(F, G) + \varepsilon$ and $d_F(g_0') \leq D(F, G) = 0$

D (F, G)+ ϵ . For any $f \in F$, consider d (f, W (g_0, g_0', λ) $\leq \lambda d$ (f, g_0) (1- λ)

d (f, g_0'). This implies

$$d_{F} (W (g_{0}, g_{0}', \lambda)) = \sup_{f \in F} d (f, W (g_{0}, g_{0}', \lambda))$$

$$\leq \lambda \sup_{f \in F} d (f, g_{0}) + (1 - \lambda) \sup_{f \in F} d (f, g_{0}')$$

$$= \lambda d_{F} (g_{0}) + (1 - \lambda) \sup d (f, g_{0}')$$

$$\leq \lambda (D (F,G) + \varepsilon) + (1 - \lambda) (D (F,G) + \varepsilon)$$

$$= D (F, G) + \varepsilon,$$

Where $W(g_0, g_0', \lambda) \in G$ by the convexity of G, implying that $W(g_0, g_0', \lambda) \in G$ by the convexity of G.

 g_0', λ) is ε -s.a. in G to F and so the set $P_{G(\varepsilon)}(F)$ is convex.

This proposition shows that if G is a convex subset of a convex metric space (X, d) and if give are ε -s.a. in G to F then W (g_0, g_0', λ) is also ε -s.a. in G to F for every $\lambda \in I$.

For $F = \{x_1, x_2\}$, we get: Corollary 4.1.4 For any convex set G in a convex metric space (X, d), the set $P_{G(\varepsilon)}(x_1, x_2)$ is convex.

The above corollary shows that in a convex metric space (X, d) if g_0 . g'_0 are ϵ -simultaneous approximations to x_1 and x_2 by elements of a convex set, then W (g_0, g'_0, λ) is also ϵ -s.a. to x_1 and x_2 for every $\lambda \in I$.

Next result proves the starshapedness of the set $P_{G}(\varepsilon)(F)$

Proposition 4.1.2 [11]. In a convex metric space (X, d), if G is starshaped with respect to g_0 and F a bounded subset of X then $P_{G(\varepsilon)}(F)$ is also starshaped with respect to g_0 provided $g_0 \in P_{G(\varepsilon)}(F)$.

Proof. Let $y \in P_{G(\varepsilon)}(F)$. Then $d_F(y) \leq D(F, G) + \varepsilon$. Since G is starshaped with respect to g_0 , W $(y, g_0, \lambda) \in G$ for $\lambda \in I$.

We claim that W (y, g_0, λ) $\in P_{G(\varepsilon)}(F)$ for all $\lambda \in I$.

Consider

$$\begin{aligned} \mathbf{d}_{\mathbf{F}}(\mathbf{W}(\mathbf{y}, g_{0}, \lambda)) &= \sup_{f \in F} \mathbf{d} \left(\mathbf{f}, \mathbf{W} \left(\mathbf{y}, g_{0}, \lambda \right) \right) \\ &\leq \sup_{f \in F} \mathbf{d} \left(\mathbf{f}, \mathbf{y} \right) + \left(\mathbf{1} - \lambda \right) \sup_{f \in F} \mathbf{d} \left(\mathbf{f}, g_{0} \right) \\ &= \lambda \, \mathbf{d}_{F}(\mathbf{y}) + \left(\mathbf{1} - \lambda \right) \mathbf{d}_{F}(g_{0}) \\ &\leq \lambda \, \left(\mathbf{D} \left(\mathbf{F}, \mathbf{G} \right) + \varepsilon \right) + \left(\mathbf{1} - \lambda \right) \left(\mathbf{D} \left(\mathbf{F}, \mathbf{G} \right) + \varepsilon \right) \\ &= \mathbf{D} \left(\mathbf{F}, \mathbf{G} \right) + \varepsilon . \end{aligned}$$

$$e \\ \mathbf{d}_{\mathbf{F}}(\mathbf{w} \left(\mathbf{y}, g_{0}, \lambda \right) \leq \left(\left(\mathbf{F}, \mathbf{G} \right) + \varepsilon \right) \end{aligned}$$

Hence

implying that W(y, g_0 , λ) $\in P_{G(\varepsilon)}(F)$ for all $y \in P_{G(\varepsilon)}(F)$ and $\lambda \in I$ i.e. set $P_{G(\varepsilon)}(F)$ is starshoped with respect to g_0 .

For F = (x_1, x_2) , we get:

Corollary 4.1.3 [11]. In a conved metric space (X, d) if G is starshaped with respect to g_0 then $P_{G(\varepsilon)}(x_1, x_2)$, is also starshaped with respect to g_0 if $g_0 \in P_{G(\varepsilon)}(x_1, x_2)$.

0.0

Let CB (X) be the family of non-empty closed and bounded subsets of X. Let H be a Hausdorff metric on CB (X) i.e. for A, $B \in CB(X, M)$

 $H(A,B) = Max (\sup_{a \in A} d (a,B), \qquad \sup_{b \in B} d (b,A)$

Sastry and Naidu [12], and Govindrajulu [5] proved that under certain conditions, the best simultaneous approximation operator (not necessarily single-valued) is upper semi-continuous. The following result deals with the upper semi-continuity of the ε -simultaneous approximation map:

Proposition 4.1.3 [12]. If G is a compact subset of a metric space (X, d) then the ε -simultaneous approximation map $P_{G}(\varepsilon):X \rightarrow 2^{G}$ is upper semicontinuous i.e. the set $K = \{F \in C_{F}(\varepsilon): P_{G}(\varepsilon) (F) \cap N \neq \phi\}$ is closed for every closed set N in X.

Proof. Let $\{F_n\}$ be a sequence in K converging to $F \in CB(X)$. Then there exists a sequence $\langle +x_n \rangle$ in G such that $x_n \in P_{G(\mathcal{E})}(F_n) \cap N$ for each n and so $d_F(x_n) \leq D(F_n, G) + \varepsilon$. Consider

$$d_{F}(x_{n}) \leq H(F, x_{n}) + d_{F}(x_{n})$$

$$\leq H(F, F_{n}) + D(F_{n}, G) + \varepsilon \qquad (4.1.1)$$

Since G is compact, there exists a subsequence $\langle x_{n_i} \rangle$ of $\langle x_n \rangle$ such

that $\langle \mathbf{x}_{n_i} \rangle \longrightarrow \mathbf{x}_0 \mathbf{x}_0$ and so (4.1.1) implies

 $\mathbf{d}_{\mathbf{F}}(\mathbf{x}_0) \leq \mathbf{D}(\mathbf{F},\mathbf{G}) + \boldsymbol{\varepsilon} \text{ as } \mathbf{H}(\mathbf{F},\mathbf{F}_n) \longrightarrow \mathbf{0}$

i.e. $x_0 \in P_{G(\varepsilon)}(F)$.

Since $\langle \mathbf{x}_{n_i} \rangle \in \mathbb{N}$ and N is closed, $X_0 \in \mathbb{N}$. Consequently $X_0 \in P_{G(\varepsilon)}(F) \cap \mathbb{N}$ i.e. $F \in \mathbb{K}$ implying that the map $P_{G(\varepsilon)}(\varepsilon)$ is upper semicontinuous.

The following result deals with the upper semi-continuity of the ε simultaneous approximation map $P_{G(\varepsilon)}(x_1, x_2)$:

Proposition 4.1.4 [11]. If G is a compact subset of metric space (X, d), then the ε -simultaneous approximation map $P_{G(\varepsilon)}$: XxX-->2^G is upper semi-continuous i.e. the set B={ $(x_1, x_2) \in XxX$: $P_{G(\varepsilon)}(x_1, x_2) \cap N \neq \phi$ } is closed for every closed set N \subset G. Proof. The proof of Proposition 4.1.3 by taking F=(x₁, x₂). However, an independent proof is as under:

Let $(x_1^{(0)}, x_2^{(0)})$ be a limit point of the set B. Then there exists a sequence $(x_1^{(n)}, x_2^{(n)}) >$ in B converging to $(x_1^{(0)}, x_2^{(0)}) \in B$, there exists a sequence $\langle g_n \rangle$ in G such that

$$g_n \in P_{G(\varepsilon)}(x_1^{(n)}, x_2^{(n)}) \cap \mathbf{N}, \mathbf{n} = 1, 2, 3 ...$$

Consider

$$d (x_1^{(0)}, g_n) + d (x_2^{(0)}, g_n) \leq d(x_1^{(0)}, x_1^{(n)}) + d (x_1^{(n)}, g_n) + d (x_2^{(0)}, x_2^{(n)}) + d (x_2^{(n)}, g_n)$$

$$\leq d (x_1^{(0)}, x_1^{(n)}) + d (x_2^{(0)}, x_2^{(n)}) + \inf \{d (x_1^{(n)}, g) + d (x_2^{(n)}, g_1) \} + d (x_2^{(n)}, g_1) +$$

$$\leq d (x_1^{(0)}, x_1^{(n)}) + d (x_2^{(0)}, x_2^{(n)}) + inf \{d (x_1^{(0)}, x_1^{(n)}) + d (x_1^{(0)}, g) + d (x_2^{(n)}, x_2^{(0)}) + d (x_2^{(0)}, g) : g \in G\} + \varepsilon = 2 \{d (x_1^{(0)}, g) + d (x_2^{(0)}, g) : g \in G\} + \varepsilon.$$

This implies

 $\lim \left[d(x_1^{(0)}, g_n) + d(x_2^{(0)}, g_n) \right] \leq \inf \left\{ d(x_1^{(0)}, g) : g \in G \right\} + \varepsilon$ (4.1.2)

Since G is compact, there exists a subsequence $\langle g_n \rangle$ of $\langle g_n \rangle$ such that $\langle g_{n_i} \rangle --> g_0$ and so (4.1.2) implies $d(x_1^{(0)}, +g_0)+d(x_2^{(0)}, g_0) \leq \inf \{d(x_1^{(0)}, g)+d(x_2^{(0)}, g_0) \in G\} + \varepsilon$ i.e. $g_0 \in P_{G}(\varepsilon)(x_1^{(0)}, x_2^{(0)}).$

Since $\langle g_n \rangle \in \mathbb{N}$ and N is closed, $g_0 \in \mathbb{N}$. Consequently, $g_0 \in P_{G(\mathcal{E})}(x_1^{(0)}, x_2^{(0)}) \cap \mathbb{N}$ i.e. $(x_1^{(0)}, x_2^{(0)}) \in \mathbb{B}$. Thus B is closed and so $P_{G(\mathcal{E})}$ is upper semi-continuous.

The next result deals with the structure of the sets

 $\mathbf{P}_{G(\mathcal{E})}(x_{1}^{(0)}, x_{2}^{(0)})$

Proposition 4.1.5 [11]. Let G be a non-empty compact subset of metric space (X, d) and $P_{G(\mathcal{E})}$: XxX-->2^G(= the collection of all bounded subsets of G) be the ε -simultaneous approximation map of XxX into G defined by $P_{G(\mathcal{E})}(x_1, x_2) = \{ g_0 \in G: d(x_1, g_0) (x_0, g_0) \leq + \varepsilon \}$.

Where $r = \inf \{ d(x_1, g) + d(x_2, g) : g \in G \}.$

Then the set $P_{G}(\varepsilon)$ (AxA) = $\cup \{P_{G}(\varepsilon)(x_1, x_2): x_1, x_2 \in A\}$ is compact for any copact subset A of X.

Proof. Let $\langle g_{n_i} \rangle$ be any sequence in $P_{G(\mathcal{E})}(AxA) \subseteq G$. Since G is compact, there exists a subsequence $\langle g_n \rangle$ of $\langle g_n \rangle$ such that $\langle g_{n_i} \rangle - \rangle g_o \in G$

Since $\langle g_{n_i} \rangle$ is a sequence in $P_{G(\mathcal{E})}$ (AxA), there exist

we have

 $\lim [d ((x_1^{(n_{i_j})}, g_{n_{i_j}}) + d (x_1^{(n_{i_j})}, g_{n_{i_j}})] \leq \inf (d \{x_1^{(0)}, g) + d (x_2^{(0)}, g) : g \in G\} + \varepsilon$ i.e. $d (x_1^{(0)}, g_0) + d (x_2^{(0)}, g_0) \leq \inf (d \{x_1^{(0)}, g) + d (x_2^{(0)}, g) : g \in G\} + \varepsilon$ i.e. $g_0 \in P_{G(\varepsilon)}(x_1^{(0)}, x_2^{(0)}) \subset P_{G(\varepsilon)}(AxA)$. Hence $P_{G(\varepsilon)}(AxA)$ is compact.

4.2 Best Simultaneous Co-Approximation

This section deals with the problem of best simultaneous coapproximation in metric linear spaces and convex metric spaces.

To start with, we recall a few definitions.

Definition 4.2.1. Let (X, d) be a metric space and G a non-empty subset of X. An element $g_0 \in g$ is called a best simultaneous co-approximation to x, y $\in X$ from G if

 $d(g_0, g) \le \max \{ d(x, g) \} d(y, g) \text{ for all } g \in G.$

The set of all best simultaneous co-approximations to $x, y \in X$ from G is denoted by $S_G(x,y)$. G is called an existence set if $S_G(x,y)$ contains at least one element, G is called a uniqueness set if $S_G(x,y)$ contains atomst one element and G is called an existence and uniqueness set if $S_G(x,y)$ contains exactly on element.

Definition 4.2.2. A metric linear space (x,d) is said to be totally complete [6] if it has the property that its d-kounded closed sets are compact.

Every totally complete metric linear space is finite dimensional but a finite-dimensional metric linear space need not be totally complete [6]. However, finite dimensional normed linear spaces are totally complete.

Some properties of the set $S_G(x,y)$ are as under: Lemma 4.2.1. (a) if $g_0 \in S_G(x,y)$ then for every $g \in G$

 $d(x, g_0) \le 2 \max \{ d(x, g), d(y, g) \}$

 $d(y, g_0) \le 2 \max \{ d(x, g), d(y, g) \},\$

(b) $S_G(x,y)$ is bounded,

(c) $S_G(x,y)$ is closed if G is closed.

Proof.

- is easy to verity (a)
- Let $g_0 \in S_G(x,y)$. Then by part (a), we have **(b)**

$$d(x, g_0) \le 2 \max \{ d(x, g), d(y, g) \}$$

for all $g \in G$ and so

$$d (g_0, x) \le 2 \text{ inf } \max_{g \in G} \{ d (x, g), d (y, g) \} \\ \equiv 2 d (x, y; G).$$

Then for arbitrary $g_0, g_0' \in S_G(x, y)$

$$d(g_0, g_0') \le d(g_0, x) + d(x, g_0') \le 4d(x, y; G)$$

implying thereby that S_G (x, y) is bounded.

Then for anomaly
$$g_0, g_0 \in S_G(\mathbf{x}, \mathbf{y})$$

 $d(g_0, g_0') \leq d(g_0, \mathbf{x}) + d(\mathbf{x}, g_0')$
 $\leq 4d(\mathbf{x}, \mathbf{y}; \mathbf{G})$
implying thereby that $S_G(\mathbf{x}, \mathbf{y})$ is bounded.
(c) Let $\{g_n\}$ be any sequence of element of $S_G(\mathbf{x}, \mathbf{y})$ such
that $\{g_n\} \longrightarrow g_0$.
Since G is closed, $g_0 \in \mathbf{G}$. For any $\mathbf{y} \in \mathbf{V}$,

Consider

$$d(g_0,g) \leq d(g_0,g) + d(g_n,g)$$

 $\leq (g_0, g_n) + \max \{ d(x, g), d(y, g) \}$

$$\leftrightarrow \phi + \max \{ d(x, g), d(y, g) \} as n \rightarrow \infty.$$

Thus $g_0 \in S_G(x, y)$ and so $S_G(x, y)$ is closed.

For normed linear spaces Lemma 4.2.1 was proved in [13] proposition 3.1.

Note : The following results can be easily verified :

For $g_0 \in S_G(x, y)$, max d (g_0, x) , d (g_0, y) } $\leq 2\max\{d(x,g), d(y,g)\}$ (i)

(ii) For
$$g_0 \in P_G(x, y), d(g_0, g) \le 2 \max \{d(x, g), d(y, g)\}$$

(iii) For
$$g_0 \in \mathbf{P}_G(\mathbf{x})$$
, $\mathbf{d}(g_0, \mathbf{g}) \leq 2 \mathbf{d}(\mathbf{x}, \mathbf{g})$

(iv) For
$$g_0 \in \mathbf{R}_G(\mathbf{x})$$
, $d(g_0, \mathbf{x}) \leq 2d(\mathbf{x}, \mathbf{g})$

for all $g \in G$.

(v) For $x \in X \setminus G$ and $g_0 \in G$ if g_0 is a best co-approximation to x from G, then g_0 is a best simultaneous co-approximation to x, y from G, for every $y \in X \setminus G$. But, if g_0 need not be a best co-approximation to either x ory. Therefore, $R_G(x) \cup R_G(y) \subset S_G(x, y)$.

It was proved in [1] that if G is a convex subset of a convex metric space (X,d), x, $y \in X$ and g_1, g_2 are best simultaneous approximations to x and y by the elements of G then $W(g_1, g_2, \lambda) \in G$ is also a best simultaneous approximation to x, y. The following theorem shows that the same is true in case of best simultaneous co-approximation:

Theorem 4.2.1. [14]. If G is a convex subset of a convex metric space (X, d) and x, $y \in X$. Then S₆(x, y) is convex. Proof. Let $g_1, g_2 \in S_G(x, y)$ and $\lambda \in [0, 1]$.

Then $W(g_1, g_2, \lambda) \in G$ as $g_1, g_2 \in G$ and G is a convex set. Consider

$$d(W(g_1, g_2, \lambda), g) \le \lambda d(g_1, g) + (1 - \lambda) d(g_2, g)$$

$$\le \max \{ d(g_1, g), d(g_2, g) \}$$
(4.2.1)

Since $g_1, g_2 \in S_G(x,y)$,

$$d(g_1, g) \le \max \{ d(x,g), d(y, g) \}, and$$
 (4.2.2)

 $d(g_2, g) \le \max \{ d(x,g), d(y, g) \}.$

Now (4.2.1) and (4.2.2) imply

$$d(W(g_1, g_2, \lambda), g) \le \max \{ d(x, g), d(y, g) \}$$

for every $g \in G$ and so $W(g_1, g_2, \lambda) \in S_G(x,y)$.

It was proved by Diaz and McLaughlin [20] that for a normed linear space X, a finite dimensional subspace G of X and x, $y \in X/G$, if $g_0 \in G$ is a best approximation to $(x_y)/2$ from G, then g_0 is not a best simultaneous approximation to x, y from G. However, in case of best co-approximation we have:

Theorem 4.2.2 [14]. Let (X, d) be a convex metric space, G a subset of X, x, $y \in X/G$, $g_0 \in G$ and $0 \le \alpha \le 1$. If g_0 is a best α -approximation to W (x, y, α) for some α , then g_0 is a best simultaneous co-approximation to x, y from G.

Proof. Assume that g_0 is a best co-approximation to W (x, y, α) for some $\alpha \in [0,1]$. Then for every $g \in G$ follows that $d(g_2, g) \leq d(W(x,y,\alpha),g)$

$$\leq \alpha d (x,g) + (1-\alpha) d (y,g)$$
$$\leq \max \{ d (x,g), d (y,g) \}.$$

Thus g_0 is a best simultaneous co-approximation to x, y for G.

Remark. For normed linear spaces this result was proved in [10] – **Theorem 4.4**

For a convex metric linear space (X, d) and x, y belonging to convex set G in X, $\alpha x + (1-\alpha)y$, $0 \le \alpha \le 1$ is a best simultaneous coapproximation to x, y from G. As for any $g \in G$

 $d(\alpha x + (1-\alpha) y,g) \le \alpha d(x,g) + (1-\alpha) d(y,g)$ (by the convexity of (X, d)

 $\leq \max \{ d(x, g), d(y, g) \}$

Also every element belonging to $S_G(x, y)$ is of the form

 $\alpha x + (1-\alpha) y, \quad 0 \le \alpha \le 1.$

In

m

Hence for a convex metric linear space (X, d) and a convex subset G of X, if x, $y \in G$ then

$$S_G(x, y) = \{ \alpha x + (1-\alpha) y : 0 \le \alpha \le 1 \}.$$

the next theorem, we list some more properties of the set $S_G(x, y)$ in etric linear spaces.

Theorem 4.2.3 [14]. Let (X, d) be a metric linear space, G a subspace of X and x, $y \in X$. Then the following results hold:

(i)
$$S_G(x + g, y+g) = S_G(x, y) + g$$
 for $g \in G$.

(ii)
$$S_G(\alpha x, \alpha y) = \alpha S_G(x, y)$$
 for $x, y \in G, \alpha \in R$

The property Theorem 4.2.3 is a minor modification of that of Proposition 3.3 given in [10], for normed linear spaces.

The next result gives another property of the set $S_G(x, y)$ in totally complete metric linear spaces.

Theorem 4.2.3 [14]. Let (X, d) be a totally complete metric linear space, G a non-empty closed subset of X. Then $S_G(x, y)$ is compact. **Proof.** Since $S_c(x, y)$ is closed and bounded (lemma 4.21) and the space is totally complete. $S_G(x, y)$ is compact.

The following theorem proves the upper semi-continuity of the mapping S₆ for totally complete metric linear spaces:

Theorem 4.2.5 [62] Let (X, d) be a totally complete metric linear space (X, d). Then the set-valued map $S_G\{x, y\}$: x, y $\in X$ --->2^G is upper semicontinuous.

Proof. Let A be a closed subset of G, we have to show that $B=\{(x,y): x, y \in X, S_G(x,y) \cap A \neq \phi\}$ is a closed subset of X. Let $<(x_n, y_n)>$ be a sequence in B such that $<(x_n, y_n)>--->(x_0, y_0)$ for some (x_0, y_0) $\in X$. Since $(x_n, y_n) \cap A$ is non-empty choose $g_n \in S_G(x_n, y_n) \cap A$ for each C

Consider the set C=closure of the set {g₁, g₂, ..., g_n, ...}. Using Lemma 4.2.1 (a), it is easy to see that the set C is a bounded set. Since C is a closed and bounded subset of the totaly complete space G, C is compact. Therefore the sequecne $\langle g_n \rangle$ has a subsequence { g_{n_k} } converging to g_0 . Since A is closed, $g_0 \in A$.

Now to prove that B is closed, it is sufficient to prove that $g_0 \in S_G(x_0, y_0)$. For every $g \in G$.

$$d(g, g_{0}) \leq d(g, g_{n_{k}}) + d(g_{n_{k}}, g_{0})$$

$$\leq \max \{ d(x_{n_{k}}, g), d(y_{n_{n^{k}}}, g) \} + d(g_{n_{k}}, g_{0})$$

 $\rightarrow \max \{ d(x_0, g), d(y_0, g) + 0 \text{ as } n \rightarrow \infty \}$

Therefore $g_0 \in S_G(x_0, y_0) \cap A$ and so $(x_0, y_0) \in B$ i.e. B is closed

REFERENCES

- Ismat Beg, Naseer Shahzad and Mohammd Iqbal : Fixed Point Theorems and Best Approximation in Convex Metric Spaces, Approx. Theory & its Appl., 8 (1992), 97-105.
- R.C. Buck : Applications of Duality in Approximation Theory -Approximation of Functions, (Ed. H.L. Garabedin) Elsevier Publ. Co., Amsterdam – London - New York, (1905), 27-42.
- 3. C.B. Dunham : Similtaneous Chebyshev Approximation of Functions on an Interval, Proc. Amer. Math. Soc., 18(1967), 472-477.
- 4. C. Franchetti and M.Furi : Some Properties of Hilbert Spaces, Rev. Roum. Math. Pure et Appl., 17 (1972), 1045-1048.
- 5. Paladugu Govindrajutu On Best Simultaneous Approximation ,
 J. Math. Phy. Sci., 18 (1984), 345- 351.
- 6. T.D. Narang : On Totally Complete Spaces, The Mathematics Education, 16(1982), 4-5.
- 7. T.D. Narang : on Best Co-approximation in Normed Linear Spaces, Rocky Mountain Journal of Mathematics, 22(1991), 265-287.
 - 8. T.D. Narang: Simultaneous Approximation and Chebyshev Centers in Metric Spaces, Mat. Vesnik, 51(1999), 61- 68.
 - 9. M.J.D. Powel : Approximation Theory and Methods, Cambridge University, Cambridge (1981)
 - 10. Geetha S.Rao and R. Sarvanan: Best Simultaneous Coapproximation, Indian J. Math., 40(1998), 353-362.

- Meenu Sharma and T. D. Narang : On Best Simultaneous Co-Approximation – To appear in "Mathematics in the 21st Century", K.K. Dewan (Ed.).
- 12. Meenu Sharma and T.D. Narang : On Best Approximation and Fixed Points in Pseudo Strictly Convex Spaces, Current Trends in Industrial and Applied Mathematics, P. Manchanda, K. Ahmed and A.H. Siddiqui (Eds.), Anamaya Publishers, New Delhi (2002).
- Meenu Sharma and T.D. Narang : On the Multivalued Metric Projections in Convex Spaces – Communicated.
- 14. Meenu Sharma and T.D. Narang : On Simultaneous Approximation and a Fixed Point heorem - Communicated.
- 15. W. Takahashi : A Convexity in Metric Spaces and Non-Expansive Mappings I, Kodai Math. Sem. Rep., 22 (1970), 142-149.

Meenu

*Dr. Meenu Sharma Principal A.S. College for Women, Khanna

- x ----