MODULE" - 4

ON & -SIMULTANEOUS APPROXIMATION AND BEST
SIMULTANEOUS CO-APPROXIMATION

This module deals with & -Simultaneous Approximation and Best
Simultaneous Co-Approximation. The chapter has been divided into two
sections. In the first section we discuss & -simultaneous approximation.
The problem of best simultaneous opprozined (b.s.a.) is concerned with

approximating simultaneously any two elementsX, x& space X by the

elements of a subset A of X. More generally, i ‘%of elements B is given
in X, one might like to approximate all thebnents of B simultaneously
by a single element of A. This typ&f problem arises when a function
being approximated is not kno%gecisely, but is known to belong to a
set. C. B. Dunhan [3] @g@o have been the first who studied the
problem of b.s.a. in normed linear spaces. R.C. Buck [2] studied the
problem of £-appreximation which reduces to the problem of best
approximatiorﬁ the particular case when &£=0. In this section, we

discuss ¢-simultaneous approximation for any two elements x,, X,and for

a non-empty bounded subset F of a convex metric space (X, d) with
respect to a non-empty subset G of X. Defining &-simultaneous

approximation map
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P XxX =25 by By, (%, %) ={g, €G:d(x, g,) +d(X,, ;) <r + &} where r=inf (d (
X, g) +d (%, g) : ge€G} and we prove the upper semi-continuity of the

map F;,,. We also prove the convexity, boundedness, closeness and

sharshapedness of the set Fy, (X, X,) and of F;, (F) in the first section.

The second section of this module deals with Best Simultaneous Co-
approximation A new kind of approximation, called best co-approximation
was introduced in normed linear spaces by C. Franchettignd M. Furi [4]
in 1972. This study was taken up later by T.D. g, P.L. Papini,
Geetha S. Rao, Ivan Singer, S.P. Singh and fe &hers (see [77], [8].
Generalizing the concept of best approxim@tioyy Geetha S. Rao and R.
Sarvanan studied the problem of best simultaneous co-approximation in

simultaneous co-approximation i ex metric linear spaces and convex

normed liner spaces in [10]. In this s§ction, we study the problem of best

have also given some pro

metric spaces thereby exte d@iome of the results proved in [10] We
&s of the set S.(x,y) i.e. the set of all best

simultaneous co-approximations to x, y in G. We have proved that for a

convex metric spage ’(X, d) and G a convex subset of X, the set S;(x,y) is

convex. We h also proved the upper semi continuity of the mapping
Se {(x,¥):x,ye X}—2° in totally complete metric linear spaces (a notion

introduced by T.D. Narang [97).

4.1 & -Simultaneous Approximation

This section deals with &-simultaneous approximation in metric

spaces. In this section, we discuss &-simultaneous approximation of any
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mpty bounded subset F of a conve

metric space ty subset G of X.

To start with, w

Definition 4.1.1. Let (X, d) be subset of

element g.€ G is said to-be (i) a

c—[2om G is denoted by

Fotoy(X) -
(1) tion (&-s.a.)to x ,X, €

X from G if d (x,

where r=inf { d(x,, g) +

ed by Fg,)(x;, X;).

X, d) be a metric space, G anon e

subset of X. For x in X, let

ing Mathematics



={g,€G:sup< in(lgsupd(y, g)+e}.

yeF g yeF
An element g, e R, (F)is called &-simultaneous approximation (&-

s.a.) of F with respect to G.

One of the advantages of considering the sets F; (%, x,)and P, (F)

with £€>0, instead of the sets P,(x;,x,) and P;(F) respectively is that the

sets B (x,,x,)and P, (F)are always non-void for €>0.

The problem of g-s.a: is equivalent to the probl?xof minimzing
certain functional as shown below:
Lemma 4.1.1 [12]. If G is any subset of a met '&pace (X, d) and F a
bounded subset of X. Then the functional @R defined by ¢ (g) =

supd (f, g ) is continuous.
feF

Proof. Let €>0 be given. For any f eﬁnd g, g'€G, we have d (f, g) <d (£,
g') +d (g' g) and so sup d(f, % psupd (f, g') +d (g', g)

feF feF
ie. §:(g)-¢ (g) =d (g" g

Inerchanging g and g', we get @ (g)-9 (g) <d (g, g') and so
#(9) — #(9")| < d(gs b Therefore, if d (g, g') <€ then |¢(g) - #(g")| <€ and
consequently ﬁintinuous.

If we take ¢' (g) = ¢ (g) +€ then 1gr€1Gf @' (g) brelg @ g) +e.
So ag, €G satistying ¢' (g,)=inf 4' (g) is an e=s.a. to F

Thus, the problem of €-s.a. is the problem of minimizing the functional
@' on G.

The following lemma deals with the boundedness and closedness of

the set Fy,\(F).
Lemma 4.1.2. [12] The set F;,(F)is bounded and is a closed subset of G if

G is closed. In addition, F,(F), is compact if G is compact.
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2 (D (F, G) +¢).
(F')is bounded.

is closed. Let g, be a limit poin

Y> in Fy)(F) such that <

(9o)=D (F, G) +e=>g,€ PG(S)(F
is a closed subset of G. If the set
t as closed subset of a

G is compact t

compact set is compact.

If we take F = (X,X,),

Corollary 4.1.1 [{] The set PG(E)
.
if G is clo

subset
n addition, Fy, (%, X,

llowing result shows the conve

any convex set G in a convex me
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)<D(F,G)+eand d, (g, )<
D (F, G)+ &. For ,A)<Ad  (£,9,) (1-1)
d (f, g, )- This implies

dr (W (go-Go » 4)

convexity mnplying that

go > 4) P, (F)is convex.

This prop
en W (go.gy 4) is

metric space (X, d) an

also &-s.a.in G to F for eve
For F = {x, x,}, we get:

.
lary 4.1. For any convex se

X, X,) is convex.
ollary shows that in a convex met

Ximations to x: and x. by elements

to x: and x: for every 4 €L.

Next of the set P& (F)
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tric space (X, d), if G is starshap

with respect t of X then F,(F)is also

starshaped with resp

Proof. Let y€ F;, (F). Then is starshaped

respect to g,, W (y, g,, 4)€

aim that W (y, g,. 1) € F;,,(F)fo

upd(fW(y,gom@S
f,y) + (1- zﬁsj d (£ go)

(1-,1) (D (F,G) +¢)

Hence

d(W (¥, Go- 4)

plying that W(ggo A) € By, i.e. set

is star@e

with respect to g,.

,), we get:
conved metric space (X, d) if G is

), is also starshaped with respec
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mpty closed and bounded subsets o

X. Let Hbe a
A, Be CB(X,
H(A,B) = Max (sup
acA

Sastry and Naidu [127], and
conditions, the best simultaneous
le-valued) is upper semi-continuo

emi-continuity of the g-simu

pact subset of a metric space (X
then the &- Pog):X-->2¢ is upper semi-
continuous i.e. the # @} is closed for every
closed set N in X.
Proof. Let {F.} be a sequence in

.
there ex@seqnence <+x»> in

o dr (x.) <D (F», G) +¢&.Consider

<H (F, xu) +dr (xu)

)+ D (F., G) +¢&
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Since< X,

Xo € F,)(F) NN ie. F
continuous.

The following result deals with
us approximation map F; (x;,X,):

[11]. If G is a compact subset o

approximation map {b‘s

ontinuous 1@ set B={ (x, X,

Py (%0, osed set NC G.

Proof. The pro om Proposition 4.1.3 by

taking F=(x,, x.). Howe

Let (X, ©, X,©) be a limit

ce <g.> such that

Rt . <) N, n=1,2,3 ..

O x0) +d (", goy+d (2, x7) +

", g)

d (", x3") +inf {d (x".g)
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+d (x), x5+

X, g) +d(x3". ;" )+

is implies
g:) +d (x;".g»)] <inf {d(x”, g):

is compact, there exists a subseque

o (4.1.2) implies

d(x”, g)+d (xg”,c‘;@&} +e

. Consequently,

9o € PG(E)()C{O), X closed and so Pqg) is
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X.): X1, X.€ A} is compact for any

Proof. Let <g, > be . Since G is compact,

there exists a subsequence

Since <, > is a sequence in

") in AxA such that for each n;,
8)(X1(ni),X2(ni))
(Xz(ni) ’ gni) <inf {d (Xl(ni)’ g) +d (

" x,) > has a subs@&:

. Since

inf {d (%, (%2, g) +d (x,7, g): g€ G}

and

a(x,0,)+d(6,°,8,) =
Q’Q’ d(x,”, %,
< d( Xl(o) ,Xl(nij))-i'd( Xl(nij y

inf {d (X, ", g) +d (X, 7, g) : g€

inf (d {X,,g) +d (x,”, g) :g€ G} +
+d (x,, g): g€ G} +¢

c (0)
Le. gy € By, (277, %
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4.2 Best Simultaneous Co-Approximation
This section deals with the problem of best simultaneous co-
approximation in metric linear spaces and convex metric spaces.
To start with, we recall a few definitions.
Definition 4.2.1. Let (X, d) be a metric space and G a non-empty subset
of X. An element ¢, €Qis called a best simultaneous co-approximation to

X, yeX from G if
d(gy,9) <max{d(x,9)}d(y,Q) forall geG.

The set of all best simultaneous co-approximations to x, y € X from
G is denoted by Sc(x,y). G is called an existence set if& ,y) contains at
least one element, G is called a uniqueness set i X,y) contains atomst
one element and G is called an existence %@uqueness set if So(Xx,y)
contains exactly on element.
Definition 4.2.2. A metric linear space (x,d) is said to be totally complete
[6] if it has the property that its d ded closed sets are compact.
Every totally complete néJQl; inear space is finite dimensional but a
finite-dimensional metricel space need not be totally complete [67].
However, finite dimensional normed linear spaces are totally complete.
Some properties of the set Sc(x,y) are as under:
Lemma 4.2.1. &; subset of a metric space (x,d) and x,y€ X, then

(a) if g,€Ss(x;y) then for every geG

d(%, go) < 2max {d(x,g),d(y,8)}

d(y, go) < 2max {d(x,8),d(y, )}
(b)  Se(x,y) is bounded,
(c) So(x,y) is closed if G is closed.
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for all g€ G and so

d(g,x) <2 inf n;g;x

=2d(x,y;G).
itrary g, g €Sc (X, y)

d(gox) +d(x, g,)

&
is bounded. @
h{, y) such

Since G is clo

Consider

d (9o 8)

Qp+ max { d (x,

€Se ( and so Sc (X, y) is clos

ed linear spaces Lemma 4.2.

ults can be easily verified

(Go-x),d (go.y)} < 2max{d (x,g)

max {d (x,g),d(y,g)}

(iv) For g,€Re
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for all g€ G.
(v) For xeX\G and g,€G if go is a best co-approximation to x from

G, then g. is a best simultaneous co-approximation to x, y from G, for

every yE€X\G. But, if g. need not be a best co-approximation to either x
ory. Therefore, Rs(x) UR; (y) < < (X,y).

It was proved in [1] that if G is a convex subset of a convex metric

space (X,d), x, yeX and ¢,,0, are best simultaneous appsgximations to x
and y by the elements of G then W(g,,9,,4)€G is a@est simultaneous

approximation to x, y. The following theore%@ws that the same is true

in case of best simultaneous co-approximation:

Theorem 4.2.1. [14]. If G is a conve@abset of a convex metric space (X,
d) and x, y€ X. Then Ss(X, y) is&rex.

Proof. Let §,,d, € S¢ (x,ynand A €[0,1].

Then W(gl, gz,/{e Gasg,, g, €G and G is a convex set.
.

Consider Q

d(W(9,, 9,,4).9) < 4d(g;,9) + (1-1) d (9, 9)
< max {d(g,,9) . d (9, 9)} (+.2.1)
Since 0y, 9, € S5 (X,Y),
d(g;, 9) < max{d(x,9) . d (y, 9)} and (4.2.2)

d(g,, 9) < max{d(x,9),d(y, 9)}-
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Now (4.2.1) and (4.2.2) imply

d(W(g,, 9,,4),9) < max {d(x,g),d (y, 9)}
for every J € G and so W(gl, gz,ﬁ) e S (x,y).

It was proved by Diaz and McLaughlin [20] that for a normed linear
space X, a finite dimensional subspace G of X and x, Y € X/G, if g, € G is

a best approximation to (x_y)/2 from G, then g, is not a best simultaneous

approximation to x, y from G. However, in case of best co-approximation

we have: (b

Theorem 4.2.2 [14]. Let (X, d) be a convex metric , G a subset of X,

x, Ye XIG, 0,€G ando <a < 1. If g is a@‘b—approximation to W

(x, y,& ) for some &, then g.is a best simultangdus co-approximation to x,
y from G.
Proof. Assume that g, is a best co—@oximation to W (x, y,) for some

a €[0,1]. Then for every g %Qfollows that
d(@, 9) < dW(Xy,a).9)
{Qf d(xg) +(1-a)d(y, )
< max {d (x, g), d (v, 9)}

Thus g is a best simultaneous co-approximation to x, y for G.
Remark. For normed linear spaces this result was proved in [10] —
Theorem 4.4

For a convex metric linear space (X, d) and x, y belonging to convex
set G in X, ax + (1-@)y, 0 <@ < 1 is a best simultaneous co-
approximation to x, y from G. As for any g € G
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dlax +(1-a) y,9) < ad (X,0) + (1-«) d (y,g) (by the convexity of (X, d)

< max {d (x, g), d (v, 9)}

Also every element belonging to Sec (X, y) is of the form
ax+(1l-a)y, 0<a<l.
Hence for a convex metric linear space (X, d) and a convex subset G

of X, ifx, Y& G then

Sc(x,y) ={ax+(1-a)y: 0 < a < 1} Qo

In the next theorem, we list some more propertig§€ the set Sg (X,y) in

metric linear spaces. :$>

Theorem 4.2.8 [14]. Let (X, d) be a metric linear space , G a subspace of

X and x, Y € X. Then the fonowiansults hold:

Q
(i) Sg(x+g, y+g%@(x, y)+gforgeG.

(ii) Sg(ax, ay)=aS;(x,y) forx,yeG, ¢ eR

The pr@fheorem 4.2.3 is a minor modification of that of

Proposition 3.3 given in [10], for normed linear spaces.
The next result gives another property of the set S;(X,Y) in totally

complete metric linear spaces.

Theorem 4.2.3 [14]. Let (X, d) be a totally complete metric linear space ,

G a non-empty closed subset of X. Then Sg (X,Y) is compact.
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Proof. Since S(x, y) is closed and bounded (lemma 4.21) and the space is
totally complete. Sc (X, y) is compact.

The following theorem proves the upper semi-continuity of the
mapping Sc for totally complete metric linear spaces:

Theorem 4.2.5 [62] Let (X, d) be a totally complete metric linear space

X, d). Then the set-valued map S.{X,V): x,V¥ € X }--->26is upper semi-
( p oY) %Y pp

O

continuous.

Proof. Let A be a closed subset of G, we have to sho
B={(X,y) : X,y e X, Sc(X,y) "A =@} is a '}@ubset of X. Let <(Xu,

y=)> be a sequence in B such that <(x., y.)>-—> (X0, yo) for some (Xo, Yyo)

€ X . Since (xn,yn) NA is non-er@:hoose

g, €55 (X,.y,) NA for %@QJ

Consider the set C=closure of the set {g:, g-. ...., g, ...}. Using Lemma
4.2.1 (a) , it is eagy to see that the set C is a bounded set. Since C is a

closed and bo@d subset of the totaly complete space G, C is compact.

Therefore the sequecne <g.> has a subsequence {gnk}converging to go.

Since A is closed, J, € A.

Now to prove that B is closed, it is sufficient to prove that
d, € S¢ (XO, yO) . For every g € G.
d(g,g) < d(9 9,)+d(g,,0%)
< max{d(x,,9).d(y, .9} +d(g,.9)
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—  max{d (X,, 9), d (y,,9) +0asn— oo

Therefore g, € S¢ (xo,yo) M A and so (xo, yo) €B i.e. B is closed
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