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MODULE* – 3 

ON  -BIRKHOFF ORTHOGONALITY  

AND  

 -NEAR BEST APPROXIMATION 

 An element x of a normed linear space E is said to be orthogonal 

(in the sense of Birkhoff) to an element y є E if x y  > x  for every 

scalar  . The notion of Birkhoff orthogonality was used to prove some 

results on best approximation in normed linear spaces (see e.g. [6]). This 

notion of orthogonality was extended to metric linear spaces by T.D. 

Narnag [3] and some results on best approximation were proved. A 

generalization of Birkhoff Orthogonality, called  -birkhoff orthogonality 

was introduced by Sever Silvestru Dragomir [1] in normed linear spaces 

( x y ) > (1- ) x   for all scalars  ) and this notion was used to prove a 

decomposition theorem ([1]-Theorem 3). We extend the decomposition 

theorem in metric linear spaces (Theorem 3.1) 

                                                        For a subset A of a normed linear 

space X and a +ve number  , an  -near best approximation of A by M is 

a map : A M  such that ( ) ( , )x x d x M     for all x in A. This notion of 

 -near best approximation was used by Paul C. Kainen et al [2] to show 

that the existence of a continuous e-near best approximation in a strictly 
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convex normed linear space X and taking  values in a suitable subset M 

implies that M has the unique best approximation  property. We extend 

this result to convex metric linear spaces (Theorem 3.2). we also extend 

some results on e-near best approximation proved in [1] to metric linear 

spaces (Theorem 3.3 and its corollaries). 

 To start with, we recall a few definitions.  

Definition 3.1 [4]. Given a non-empty subset A of a metric space (X,d) 

and a positive number  , near best approximation of A by M is a map 

ø:A→M such that 

 d (x,ø(x)) < d(x,M) +  

for all x  in A. 

Definition 3.2 [1]. For a normed linear space X, over a field K (K=R or 

C) and   є]0,1 [, an element XxX is said to be  -Birkhoff Orthogoanl to 

y є X if  

 ( x y ) > (1- ) x   for all  єK 

We denote it by xy ( -B). 

 For a metric linear space (X,d) over    field K and  ]o,1 [,  an 

element xX is said to be  –Birkhoff Orthogonal to yX [1] if 

d(x+ y, 0)   (1- ) d (x, 0) for all  K and we denote it by  
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xy ( -B). 

 If A is a non-empty subset of X then by  –Birkhoff Orthogonal 

Complement A ( -B), we denote the set of all elements of X which are 

–Birkhoff Orthogonal to A i.e.  

A ( -B)={ yX : yx( -B) for all x  A}. 

 Since A ( -B) = { yX : yx( -B) for all xA}, 0A ( -B)  as 0

x ( -B) for all xA (d (0+ x 0)  (1- ) (d (0,0) for all xA). 

 We claim that AA ( -B) {0} for every   ] 0, 1[. 

 Let y A A ( -B). Then y A ( -B). 

Now y A ( -B)   yx ( -B) for all xA. 

      yy ( -B) 

      d(y+ y)   (1- ) d (y,0) for all  K 

      0   (1- ) d (y,0) by taking  =-1 

      d (y, 0) 0(as (1- )  0) 

      d (y, 0) = 0 

 

      y = 0 

and so A A ( -B) { 0 }. 

 we now prove a lemma needed in the proof of decomposition 

theorem. 

Lemma 3.1  [5]. Let G be a closed linear subspace of a metric linear 

space (X,d), G X. Then for any   ] 0, 1 [, the  –Birkhoff Orthogonal 

complement of G is non-zero. 
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Proof.  Let yX\G. Since G is closed, d (y, G) = r>0. Thus there exists 

y
G such that 

 r   d (y, y )   r / (1- ) (as r=d (y,G) ) 

i.e. r   d (y- y , 0)   r / (1- ). 

 Put x =y- y , we have x  0 and for all 1y G and  K, we obtain 

 d( x  +  1y , 0) = d (y- y  + 1y , 0) 

    = d (y,  y -
1y ) 

      r (as d (y,G) = r and y -
1y G) 

      (1- ) d ( x , 0) 

 i.e. x  1y ( -B) and so x
G ( -B). 

 Using this lemma, we prove the following decomposition theorem 

in metric linear spaces (which for normed linear spaces was proved in 

[1])  

Theorem 3.1  [5]. Let G be a closed linear subspace of a metric linear 

space (X,d). Then for any  ] 0,1 [,we have X=G ( B)G   Proof.  

Suppose GX and xX. If xG, then x=x+0G+G ( B)  . 

If xG, then there exists an element y
G such that 

 0 < r = d (x, G)    d (x, y )    r/(1- ). 

 Since x =x- y
G ( B)  (by the above lemma), we have  

x= y + x
 G + G ( B)  . 

 Since {0}   G G ( B)    {0}, we get X = G  G ( B)  . 

 The following theorem shows that the continuity of  -near best 

approximation is enough to guarantee the uniqueness of best 
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approximation in convex in convex metric linear spaces which are pseudo 

strictly came x. 

Theorem 3.2 [5]. Let (X, d) be a convex metric linear space which is 

pseudo strictly convex and M a boundedly compact closed subset of X. 

Suppose that for each  >0, there exists a contnuous  -near best 

approximation  :X---> M of X by M then M is a Chebyshev set. 

Proof. Since a boundedly compact closed set in a metric space is 

proximinal (see [7], p. 283), ( )MP x  is non-empty for each xX. Let m

( )MP x  

 We choose a point x0X with r=d (x0,M) >0. Given a +ve integer n

1, let
n
:X  M be continuous with 

  d(x, 
n
(x) )  d (x, M)  +  1/n for all x in X. 

 Then  
n
:B (xo, r)   M and 

  d (
n
(x), x0)    r for all x in the closed ball B (xo,r). 

  Let  be a mapping defined by 

    (x) = x0+r (x-x0)/d(x, x0), x  X. 

  We claim that 

   = { x : d(x, x0) r}   { x : d(x, x0) = r }  B (x0, r) 

is a redial retraction i.e. 

(i) d (  (x), x0)=r 

(ii) for x  B (x0, r),   (x) = x. 

Consider 

d(  (x), x0) = d(x0 +   r (x-x0)/d(x,x0), x0) 

   = d  (r(x-x0)/d (x,x0), 0), 
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  r d (x-x0, 0)/d (x, x0), by the convexity of (X 

, d) 

= rd (x, x0)/d (x, x0) 

= r . 

Thus, 

       d (  (x), x0),    r       (3.1) 

As     (x) =  x0+ [ r (x-x0)]/d (x-x0) 

  = r x/d (x , x0) + [(1-r)/d (x-x0)] x0 

i.e.     (x)[x, x0] and so 

 d (x,   (x)) ) + d (  (x), x0) =  d (x, x0)    (3.2) 

Now 

d (  (x), x) = d (x0+ [r (x-x0)  ] /d (x,x0), x) 

= d (r (x-x0) /d (x, x0), x-x0)  

  [1-r/d(x , x0) ] d (0, x-x0) , by the convexity of X  

= [1-r/d(x,x0) ] d (x,x0)  

= d (x,x0) – r. 

 Hence, -d (  (x), x)   r - d(x,x0) , So (3.2) implies  

d (  (x), x0) d (x,x0)  + [r - d(x,x0) ] = r 

i.e.  d (  (x), x0)     r        (3.3) 

Combining (3.1) and 3.3), we get d (π (x, x0)  = r. 

For  x  B (x0, r)i.e.d (x, x0)   = r, we get 

  (x)= x0+r (x-x0)/d (x, x0)   

   =  x 

i.e.    (x)= x for all x  B (x0, r). 
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 Thus   : { x :d (x, 0x )  r}    {x:d (x, x0)=r} is a radial retraction 

and 
0 0: (x , )n B r   B (

0x , r). 

Now ( )n x , for x in B (
0x , r) satisfies. 

  d (
0 0(x),x (x, ) 1/ (x,x )n d M n d       (3.4) 

  
0(x,x )d + d (

0x , M)  + 1/n +  d (x, 
0x ) 

  =d (
0x , M)  + 1/n  +  2d (x, 

0x ) 

  3 r  +  1. 

 Hence 
n  ( B (x0, r) )   MB (x0, 3r +1) and 

n  (B (x0, r) ) is a 

bounded subset of M. So c1 (
n (B (

0x , r) )  is compact since M is given to 

be boundedly compact. 

Let P : X   X be the reflection through 
0x . 

i.e. P (y)  = 
0x  +  (

0x -y)      (3.5) 

Then cl 
0 0 0 0 0( ( (x ( (x ,r) )) = P (cl (B(x ,r)))n n nP B B    is compact subset 

of 
0[x ,r]B  and 

0 0 nP   is a continuous function from 
0(x ,r)B  into 

0(x ,r)B . 

Since in a convex metric linear space 
0(x ,r)B  is convex, by Rothe's 

theorem, a version of Schauder's theorem (see [74], p. 27) for each n, 

0 0 nP   has a fixed point xn in 
0(x ,r)B . 

Thus xn = 
0 0 nP   (xn) 

  = 
0P ( 0 n  (xn) ) 

= 2 
0x - ( 0 n  ( xn) ) (using (3.5) ) 

and so ( 0 n  ) (xn)  = 2xo- xn46 
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 We claim that xn , x0, 2xo -xn = 
0 n  (xn) and (x )n n  are 

consecutive collinear points. 

 Since 2xo -xn = 
0 n  (xn) implies 2xo -xn-

0 n  (xn)=0 i.e.  

0 0 ( ) 0n n nx x x      with 0     i.e.
0x nx   .

0 (x ) / ( ).n n     

Also, by the definition of   (x) we have 

 
0 0 0( ( )) (  ( ( ) )) /  d ( ( ), )n n n n n nx x r x x x x       

 
0 0 0( ) /  ( ( ), ) (1 / [ ( ( ), ])n n n n n nr x d x x r d x x x      

 
0 0 0 01. ( ) ( ) /  ( ( ), ) (1 / ( ( ), )) 0n n n n n n n nx r x d x x r d x x x          

 
0 0. ( ) ( ) .x 0n n n nx x         

with 
0 01 / ( ( ),x ) 1 / ( ( ), ) 0n n n nr d x r d x x            

 
0( ( ) ( ( ) .x ) / ( )n n n nx x          

and so 

 d 
0( (x ),x ) ( (x ),x )n n n n n nd     

   
0(2x x ,x )n nd 

  

   
0 0 0 0(x ,x ) (x ,2x x ),   x ,xn n nd d as    

     and 
02x x  are collinearn  

   
0 0=d(x ,x ) (x ,x )n nd  

   
0=2d(x ,x )n

 

Now we prove that 
0d(x ,x )n r  

Since 
0 0 0 0: (x , ) (x , )  x (x , )n nB r B r and B r     

implies 
0 0 0 0 0(  (x )x )  .  d (2x x ,x ) ,  i.e. d(x ,x )n n n nr i e r     =r.  

Hence d (  (x ),  x ) 2n n n r  . 

 

In addition for each m in M, 

d(x , ) (x , (x )) 1/  (using (3.4))n n n nm d n   
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2 1/                    (3.6)r n   

Again M is boundedly compact, the sequence { (x )}n n in 

0(x , 3r +1) M B has a convergent subsequent with limit u in x. Then the 

sequence 
0{ (x )} o n nP   has a convergent subsequence with limit 

0( ) x (x , r) oP u B   .  

Moreover, for each m in M,  

 
0 0((x x ) (x ),0) ((x ,0)d m d m       

     (x ,  )d m  

     2 (using   (3.6))           (3.7)r  

 If m is in ( )oMP x
0 0 d (x , ) (x , ) .then m d m r   

Also 0 0( , )  as x  (x ,  r).  Sod x x r B    

0 0 0 0((x x ) (x ),0) (x x , x )d m d m        

     
0 0(x x ,0) ( x ,0)d d m     

     = r + r 

     = 2r 

Implies   

 0 0((x x ) (x ),0) 2d d m r       (3.8) 

Combining (3.7) and (3.8) we have  

                       

0 0((x x ) (x ),0) 2d d m r      

= r + r 

 =
0 0((x x ),0) ((x ),0)d d m                 (3.9) 

 Since (X, d ) is pseudo strictly Convex,  (3.9) implies  
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0, 0x x (x )t m    for some  t > 0.  

i.e. m =[ (1+t) 
0x - x

]/t  implying 
0( )MP x =[ (1+t) 

0x - x
]/t  for  

 t>0. Hence M is Chebyshev. 

 In strictly convex normed linear spaces this theorem was proved by 

Paul C. Kainen et al [2] and the above proof is an extension of the one 

given in[2]. 

Corollary 3.1 [5]. Let (X, d) be a convex metric linear space, M a 

boundedly compact subset of X and x an element of X with r=d(x0, M)>0. 

Suppose that for some , with 0< <2r there exists  continuous  -near 

best approximation : ( , )B x r M  of B (x, r) by M. Then there exists a 

point 
1x  in ( , )B x r  such that d (

1x , m) 2r- . 

Proof.  The proof of this is contained in the first part of the proof of 

Theorem 3.2 (upto equation (3.6)). 

 If M is an approximatively compact set in a metric space, then 

( )MP x  is compact for each x in X. Indeed, any {
nm } in ( )MP x is a sequence 

in M with d( x,
nm ) = d(x, M) and by the definition of approximative  

compactness, has a convergent subsequence with limit in M and hence in 

( )MP x . Using this we have: 

Theorem 3.3 [5].  Let M be an approximatively compact set in a metric 

linear space (X, d) and x an element of X. Suppose that for each  >0, 

there is a continuous  -near best approximation : (x) (x) MMP    . 

Then ( )MP x  is connected.  
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 For normed linear spaces the proof of Theorem 3.3 is given in [2] 

and that proof can easily be extended to metric linear spaces. 

Corollary 3.2 [5].Let (X, d) be a metric linear space and M an 

approximately (i.e.. ( )MP x  is non-empty and countable for each x in X). 

Suppose that for each  >0 there exists a continuous  -near best 

approximation : x M  of X by M. Then M is a Chebyshev set. 

Proof.  By Theorem 3.3 for each x, ( )MP x  is connected and since the only 

countable connected set is a singleton, M is Chebyshev, 

Corollary 3.3  [5]. Let (X, d) be a metric linear space, M a closed, 

boundary compact subset of X, and x an element of X with r = d (x, M ) > 

0. If for each  > 0 , there exists a continuous  nearbest approximation 

: ( , )B x r M  of B( x ,r ) by M then ( )MP x is connected. 

Proof Since a closed , boundedly compact subset is approximatively 

compact ([6],p. 383 ), proof follows from Theorem 3.3 . 
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