MODULE" - 3
ON &-BIRKHOFF ORTHOGONALITY
AND
¢-NEAR BEST APPROXIMATION
An element x of a normed linear space E is said to be orthogonal

(in the sense of Birkhoff) to an element y € E if ||x+ayr8 |x| for every

scalar a. The notion of Birkhoff orthogonality &u ed to prove some
results on best approximation in normed line&ces (see e.g. [6]). This
notion of orthogonality was extended to metric linear spaces by T.D.
Narnag [3] and some results o Qt approximation were proved. A

generalization of Birkhofwnality, called ¢-birkhoff orthogonality

was introduced by Sever Styestru Dragomir [1] in normed linear spaces

(|x+ay|) > (1-¢)|x| for all scalars « ) and this notion was used to prove a
.

decompositio%eorem (C1]-Theorem 3). We extend the decomposition

theorem in metric linear spaces (Theorem 3.1)

For a subset A of a normed linear
space X and a +ve number ¢, an s-near best approximation of A by M is
a map ¢:A— M such that|x—g(x)|<d(x,M)+& for all x in A. This notion of
¢ -near best approximation was used by Paul C. Kainen et al [2] to show

that the existence of a continuous e-near best approximation in a strictly
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ing values in a suitable subset
ation property. We extend

this result to conve 3.2). we also extend

some results on e-near bes metric linear

spaces (Theorem 3.3 and its coro

start with, we recall a few definiti

47]. Given a non-empty subset A

&, near best approximatio

for all x in A.

Definition 3.2 [17]. For a field K (K=R or

C) and ¢€]0,1 [, an element X

N

> (1-¢)|x| for all a €K

,d) over field Kand ¢€Jo,1[, a

ing Mathematics



&-Birkhoftf Orthogonal

Complement A*(&£-B) of X which are ¢

—Birkhoff Orthogonal to A i.e.
-B)={yeX:ylx(&-B)forallx

“(e-B) = { yeX : yLlx(&-B) for a

(d (0+ax 0) =(1-¢) (d (0,0) for

(¢-B)c {0} for ev%‘%aj o, 1[.

e A*(£-B).

xeA.

for all o €K

a needed in the proof of decompo

ear subspace of a metric linear

space (X, [, the £-Birkhoff Orthogonal

complement o
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d (y, G) = r>0. Thus there exists

ie.r <d(y-y,,0)

Put X_=y-y,, we have we obtain

d(x, + 1y,,0) =

\

(1-£) d (X,, 0)
d so X_e G*(&-B). O

ove the follow@composition t
rmed lineXf spaces was proved in

space of a metric linear

(1)

Theorem 3.1

space (X,d). Then for *(& — B) Proof.

Suppose G=X and xeX. If x
x ¢ G, then then{exists an element
r=d((,G) <d(x,¥,) = r/(1-

_€ G (¢—B) (by the above lemm

{0}, we get X =G @G (¢-B).
t the continuity of &£-near best

approximation e uniqueness of best
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tric linear spaces which are pseudo
strictly came

Theorem 3.2 [57]. inear space which is

pseudo strictly convex an subset of X.
Suppose that for each &£>0, t r best
imation ¢:X---> M of X by M the

a boundedly compact closed s

p- 283), P, (x) is non-empty fo

&

d (4, (x), x0) 2

Let 7 be a mapping

T o (X-X0)/ d(x,
W im that

= {x:d(x, Xo)2r} > {x:d(x, Xo)

X-Xo)/ d(X,Xo), Xo)
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/d (X, X0), by the convexity of

a1
Xo+ [ r (x-X0)]/d (x

rx/d (x, X)) + [(1-r)/d (x-Xo

2d (x,X0) + [r-d(x,x0) ] =r

(x, Xo) =T, we get

i.e. 7 (x)=x for

Mathematics



(x, X0)=r} is a radial retraction

and 7@, :
Now ¢ (x), for x i

d (4,(%),%X, <
<d(X,X,)+ d (X,
=d (X,, M) +1/n +
<gr + 1.

(3.4)

¢, (B (xo1) ) = MNB (x0 3r

. So c1 (¢, (B (X,.r) ) is compac

&
ion througgawo {b'

(.5)

Then cl (R, X,,1))) is compact subset

of OB[X,,I] and Pz, m B(X,,I into

OB(X,,1).

<
Since 1®vex metric linear s

version of Schauder's theorem (se

oint x. in B(X,,r).

and so (7,@,) (X)
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We claim that x. . Xo 2X. -xa = 7@ (x.) and ¢ (X,) are

consecutive collinear points.
Since 2X, -xa = 7y, (X«) implies 2x. -x.- 7,8, (x.)=0 i.e.
ax, + X, +ym,¢, (X)) =0witha + f+y =0ie.X, + X, + .70, (X)) (B+7y).
Also, by the definition of 7z (x) we have
7(#,(%,)) =% + (r (£,(%,) = %)) I d (¢,(X;), %)
=1, (x,)/d (4,(x),%) + A =r/[d(4,(x,). %1%
=176, (%) =1, (X)) 1 d (6,(%,), %) = (@L=r/d(g,(X,), X))% =0
= a.myd,(X,) + P, (X)) +yX, =0 ’b,
with a+ f+y=1-r/d(g,(x,),X,)—1+r/d(g,(X,), x@é@
= 71(¢,(%,) = (B, (%)) + 7-%o) [ (B+7) C\DQ%

and so

d (¢n (Xn)’Xn) = d (72'0¢n (Xn)!xn)

=d(2X, — X, X Q‘JQ
=d(x,, 012Xy —X,,), @S X, X,
and 2X, — X, are collinear

L) 7800,

Q=2d(xn e

Now we prove that d(X ,X,)=r
Since m,¢, : B(X,,r) —B(X,,r) and x, € B(X,,r)
implies (7@, (X,)X,)=r i.ed(2x,—X,,X,) =T, i.e. d(X,,X,) =r.

Hence d (¢4, (X,), X,)=2r.

In addition for each m in M,

d(x.,m)>d(x.,é (x.)) —1/n (using (3.4))
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>2r-1/n (3.6)

Again M is boundedly compact, the sequence {@ (X )}in
M N B(X,, 3r +1) has a convergent subsequent with limit u in x. Then the

sequence {Pm@ (X.)} has a convergent subsequence with limit
Pz(u)=x_€0B(X,, 1) .

Moreover, for each m in M,
d((x,, —X,) + (X, —m),0) =d((x,, —m,0)

=d(x_, m)

>2r(using (3.6)) @3.7)
>

If m is in B, (x,) then d (X,,m)=d(x,,m)=r.
Also d(x,,X,)=rasx, €dB (X, I). So CD
d((X., =Xo) +(Xo —=m),0) =d(X, —X;,M—X,)

<d wQQ),OHd(m—xO,O)
%\%@
= 9t
Implies
&;0)+d(xo—m),0)s2r (3.8)

Combining (3.7) and (3.8) we have

d((x, —X,) +d(x, —m),0) =2r
=r+r
=d((x, —%,),0) +d((X, ~m),0) (3.9)

Since (X, d ) is pseudo strictly Convex, (3.9) implies
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X, — X, =t(X, —m)for some t > 0.
i.e. m =[ (1+t) X,-X, ]/t implying B, (X,)=[ (1+t) X,-X_, ]/t for
t>0. Hence M is Chebyshev.

In strictly convex normed linear spaces this theorem was proved by
Paul C. Kainen et al [27] and the above proof is an extension of the one
given in[2].
Corollary 3.1 [5]. Let (X, d) be a convex metric linear space, M a
boundedly compact subset of X and x an element of @:d()(o, M)>o.
Suppose that for some ¢, with 0<& <2r there exis?ép tinuous ¢&-near

best approximation ¢:B(X,r) > M of B (x, r@&
point X in 6B(X,r) such that d (X, m) >2r-¢.

hen there exists a

Proof. The proof of this is contai%l’ in the first part of the proof of

Theorem 3.2 (upto equation (3(@
If M is an approx@&&y compact set in a metric space, then

Py (X) is compact for each x in X. Indeed, any {m,. } in B, (X)is a sequence
in M with dQﬂ)’: d(x, M) and by the definition of approximative
compactness, has a convergent subsequence with limit in M and hence in
B, (X). Using this we have:

Theorem 3.3 [57]. Let M be an approximatively compact set in a metric
linear space (X, d) and x an element of X. Suppose that for each &>0,

there is a continuous &-near best approximation ¢, : (X) UR,(X)——>M.

Then P, (X) is connected.
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of of Theorem 3.3 is given in [2]

and that proo ic linear spaces.

Corollary 3.2 [5].Le space and M an

approximately (i.e.. B, (X) is ach x in X).

pose that for each &£>0 there

ationg:X - Mof X by M. Then M

3.8 for each x, B, (X) is connecte

is a singleton, M is C@V,

etric lineapspace, M a closed,
boundary ement of X withr=d (x, M) >
0. If for each £> earbest approximation

¢:B(X,r) > M of B( x ,r

Proof Since a closed , bounde
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