$MODULE^* - 3$

ON ε -BIRKHOFF ORTHOGONALITY

AND

ε-NEAR BEST APPROXIMATION

An element x of a normed linear space E is said to be orthogonal (in the sense of Birkhoff) to an element y ϵ E if $||x+\alpha y|| > ||x||$ for every scalar α . The notion of Birkhoff orthogonality way used to prove some results on best approximation in normed linear spaces (see e.g. [6]). This notion of orthogonality was extended to metric linear spaces by T.D. Narnag [3] and some results on the approximation were proved. A generalization of Birkhoff Orthogonality, called ε -birkhoff orthogonality was introduced by Sever Shyestru Dragomir [1] in normed linear spaces $(||x+\alpha y||) \ge (1-\varepsilon)||x||$ for all scalars α) and this notion was used to prove a decomposition theorem ([1]-Theorem 3). We extend the decomposition theorem in metric linear spaces (Theorem 3.1)

For a subset A of a normed linear space X and a +ve number ε , an ε -near best approximation of A by M is a map $\phi: A \to M$ such that $||x - \phi(x)|| \le d(x, M) + \varepsilon$ for all x in A. This notion of ε -near best approximation was used by Paul C. Kainen et al [2] to show that the existence of a continuous e-near best approximation in a strictly

convex normed linear space X and taking values in a suitable subset M implies that M has the unique best approximation property. We extend this result to convex metric linear spaces (Theorem 3.2). we also extend some results on e-near best approximation proved in [1] to metric linear spaces (Theorem 3.3 and its corollaries).

To start with, we recall a few definitions.

Definition 3.1 [4]. Given a non-empty subset A of a metric space (X,d) and a positive number ε , near best approximation of A by M is a map $\phi: A \rightarrow M$ such that

$$d(x, o(x)) \leq d(x, M) + \varepsilon$$

for all x in A. Definition 3.2 [1]. For a normed linear space X, over a field K (K=R or C) and $\varepsilon \in]0,1$ [, an element XxX is said to be ε -Birkhoff Orthogoanl to y e X if

 $(\|x+\alpha y\|) \ge (1-\varepsilon)\|x\|$ for all $\alpha \in \mathbf{K}$

We denote it by $x \perp y$ (\mathcal{E} -B).

For a metric linear space (X,d) over field K and $\mathcal{E} \in [0,1]$, an element $x \in X$ is said to be \mathcal{E} -Birkhoff Orthogonal to $y \in X [1]$ if

 $d(x+\alpha y, 0) \ge (1-\varepsilon) d(x, 0)$ for all $\alpha \in K$ and we denote it by

 $\mathbf{x} \perp \mathbf{y} (\varepsilon - \mathbf{B}).$

If A is a non-empty subset of X then by \mathcal{E} -Birkhoff Orthogonal Complement $A^{\perp}(\mathcal{E}$ -B), we denote the set of all elements of X which are \mathcal{E} -Birkhoff Orthogonal to A i.e.

$$A^{\perp}(\mathcal{E}-\mathbf{B}) = \{ y \in \mathbf{X} : y \perp \mathbf{x}(\mathcal{E}-\mathbf{B}) \text{ for all } \mathbf{x} \in \mathbf{A} \}.$$

Since
$$A^{\perp}(\mathcal{E}-B) = \{ y \in X : y \perp x(\mathcal{E}-B) \text{ for all } x \in A \}$$
, $o \in A^{\perp}(\mathcal{E}-B)$ as $o \perp x (\mathcal{E}-B)$ for all $x \in A$ (d $(o + \alpha x \ o) \ge (1 - \mathcal{E})$ (d (o, o) for $x \in A$).
We claim that $A \cap A^{\perp}(\mathcal{E}-B) \subseteq \{0\}$ for every $\mathcal{E} \subseteq [0, 1[$.
Let $y \in A \cap A^{\perp}(\mathcal{E}-B)$. Then $y \in A^{\perp}(\mathcal{E}-B)$.
Now $y \in A^{\perp}(\mathcal{E}-B) \Rightarrow y \perp x (\mathcal{E}-B)$ for all $x \in A$.
 $\Rightarrow y \perp y (\mathcal{E}-B)$
 $\Rightarrow \psi \perp x (\mathcal{E}-B)$ for all $x \in A$.
 $\Rightarrow y \perp y (\mathcal{E}-B)$
 $\Rightarrow \psi \perp x (\mathcal{E}-B)$ d (y, o) for all $\alpha \in K$
 $\Rightarrow 0 \ge (1 - \mathcal{E}) d (y, 0)$ by taking $\alpha = -1$
 $\Rightarrow d (y, 0) \le 0$ (as $(1 - \mathcal{E}) \ge 0$)
 $\Rightarrow d (y, 0) = 0$

and so $A \cap A^{\perp}(\mathcal{E}-B) \subseteq \{0\}$.

we now prove a lemma needed in the proof of decomposition theorem.

 \Rightarrow y = 0

Lemma 3.1 [5]. Let G be a closed linear subspace of a metric linear space (X,d), G \neq X. Then for any $\varepsilon \in]$ 0, 1 [, the ε -Birkhoff Orthogonal complement of G is non-zero.

Proof. Let $y \in X \setminus G$. Since G is closed, d (y, G) = r>0. Thus there exists $y_{\varepsilon} \in G$ such that

 $\mathbf{r} \le \mathbf{d} (\mathbf{y}, \mathbf{y}_{\varepsilon}) \le \mathbf{r} / (\mathbf{1} - \varepsilon) \quad (\text{as } \mathbf{r} = \mathbf{d} (\mathbf{y}, \mathbf{G}))$ i.e. $\mathbf{r} \le \mathbf{d} (\mathbf{y} - \mathbf{y}_{\varepsilon}, \mathbf{0}) \le \mathbf{r} / (\mathbf{1} - \varepsilon).$

Put $x_{\varepsilon} = y - y_{\varepsilon}$, we have $x_{\varepsilon} \neq 0$ and for all $y_{1} \in G$ and $\lambda \in K$, we obtain $d(x_{\varepsilon} + \lambda y_{1}, 0) = d(y - y_{\varepsilon} + \lambda y_{1}, 0)$ $= d(y, y_{\varepsilon} - \lambda y_{1})$ $\geq r (as d(y,G) = r and y_{\varepsilon} - \lambda y_{1} \in G)$ $\geq (1 - \varepsilon) d(x_{\varepsilon}, 0)$

i.e. $\mathbf{x}_{\varepsilon} \perp \mathbf{y}_{1}(\varepsilon - \mathbf{B})$ and so $\mathbf{x}_{\varepsilon} \in \mathbf{G}^{\perp}(\varepsilon - \mathbf{B})$.

Using this lemma, we prove the following decomposition theorem in metric linear spaces (which for normed linear spaces was proved in [1])

Theorem 3.1 [5]. Let G be a closer linear subspace of a metric linear space (X,d). Then for any $\varepsilon \in [0,1]$, we have $X=G \oplus G^{\perp}(\varepsilon - B)$ Proof. Suppose $G \neq X$ and $x \in X$. If $x \in G$, then $x=x+0 \in G+G^{\perp}(\varepsilon - B)$.

If $x \notin G$, then there exists an element $y_{\varepsilon} \in G$ such that $0 < r = d(x, G) \le d(x, y_{\varepsilon}) \le r/(1-\varepsilon).$

Since $x_{\varepsilon} = x - y_{\varepsilon} \in G^{\perp}(\varepsilon - B)$ (by the above lemma), we have

$$\mathbf{x} = \mathbf{y}_{\varepsilon} + \mathbf{x}_{\varepsilon} \in \mathbf{G} + \mathbf{G}^{\perp} (\varepsilon - \mathbf{B}).$$

Since $\{0\} \subseteq G \cap G^{\perp}(\varepsilon - B) \subseteq \{0\}$, we get $X = G \oplus G^{\perp}(\varepsilon - B)$.

The following theorem shows that the continuity of ε -near best approximation is enough to guarantee the uniqueness of best approximation in convex in convex metric linear spaces which are pseudo strictly came x.

Theorem 3.2 [5]. Let (X, d) be a convex metric linear space which is pseudo strictly convex and M a boundedly compact closed subset of X. Suppose that for each $\varepsilon > 0$, there exists a continuous ε -near best approximation $\phi:X \longrightarrow M$ of X by M then M is a Chebyshev set.

Proof. Since a boundedly compact closed set in a metric space is proximinal (see [7], p. 283), $P_M(x)$ is non-empty for each $x \in X$. Let $m \in P_M(x)$

We choose a point $x_0 \in X$ with r=d (x_0, M)>0. Given a +ve integer n ≥ 1 , let $\phi_n : X \rightarrow M$ be continuous with

 $d(x, \phi_n(x)) \leq d(x, M) \quad \text{for all } x \text{ in } X.$ Then $\phi_n : B(x_o, r) \rightarrow M$ and $d(\phi_n(x), x_o) \geq M$ for all x in the closed ball $B(x_o, r).$ Let π be a mapping defined by $\pi(x) = x_o + r(x - x_o)/d(x, x_o), x \in X.$ We claim that $\pi = \{x : d(x, x_o) \geq r\} \rightarrow \{x : d(x, x_o) = r\} \equiv \partial B(x_o, r)$

is a redial retraction i.e.

(i) $d(\pi(x), x_0) = r$

(ii) for
$$x \in \partial B(x_0, r)$$
, $\pi(x) = x$.

Consider

$$d(\pi (x), x_0) = d(x_0 + r (x-x_0)/d(x,x_0), x_0)$$

= d (r(x-x_0)/d (x,x_0), 0),

≥ r d (x-x₀, 0)/d (x, x₀), by the convexity of (X
 , d)
 = rd (x, x₀)/d (x, x₀)
 = r.

Thus,

$$d(\pi(x), x_0), \leq r$$
(3.1)
As $\pi(x) = x_0 + [r(x-x_0)]/d(x-x_0)$

$$= \mathbf{r} \mathbf{x}/\mathbf{d} (\mathbf{x}, \mathbf{x}_0) + [(\mathbf{1}-\mathbf{r})/\mathbf{d} (\mathbf{x}-\mathbf{x}_0)] \mathbf{x}_0$$

i.e.
$$\pi (x) \in [x, x_0]$$
 and so
 $d(x, \pi (x))) + d(\pi (x), x_0) = d(x, x_0)$
(3.2)

Now

$$d (\pi (x), x) = d (x_0 + [r (x-x_0)]/d (x, x_0), x)$$

$$= d (r (x-x_0)/d (x, x_0), x_0)$$

$$\leq [1-r/d(x, x_0)/(0, x-x_0), by the convexity of X)$$

$$= [1-r/d(x, x_0)] d (x, x_0)$$

$$= d (x, x_0) - r.$$
Hence, $d (x, x_0) = r.$
Hence, $d (x, x_0) + [r - d(x, x_0), So (3.2) \text{ implies}$

$$d (\pi (x), x_0) \geq d (x, x_0) + [r - d(x, x_0)] = r$$
i.e. $d (\pi (x), x_0) \geq r$
(3.3
Combining (3.1) and 3.3), we get $d (\pi (x, x_0) = r.$
For $x \in \partial B (x_0, r)$ i.e. $d (x, x_0) = r$, we get

$$\pi (\mathbf{x}) = \mathbf{x}_0 + \mathbf{r} (\mathbf{x} - \mathbf{x}_0) / \mathbf{d} (\mathbf{x}, \mathbf{x}_0)$$

i.e. π (x)= x for all $x \in \partial B$ (x₀, r).

Thus $\pi : \{ \mathbf{x} : \mathbf{d} (\mathbf{x}, x_0) \ge \mathbf{r} \} \rightarrow \{ \mathbf{x} : \mathbf{d} (\mathbf{x}, \mathbf{x}_0) = \mathbf{r} \}$ is a radial retraction and $\pi_0 \phi_n : B(\mathbf{x}_0, \mathbf{r}) \rightarrow \partial B(\mathbf{x}_0, \mathbf{r}).$

Now $\phi_n(x)$, for x in B (x₀, r) satisfies.

$$d (\phi_n(x), x_0 \le d(x, M) + 1/n + d(x, x_0)$$

$$\le d(x, x_0) + d (x_0, M) + 1/n + d (x, x_0)$$

$$= d (x_0, M) + 1/n + 2d (x, x_0)$$

$$\le 3 r + 1.$$
(3.4)

Hence ϕ_n (B (x₀, r)) \subseteq M \cap B (x₀, 3r +1) and ϕ_n (B (x₀, r)) is a

bounded subset of M. So c1 ($\phi_n(B(x_0, r))$) is compact for M is given to be boundedly compact.

Let $P: X \to X$ be the reflection through \mathfrak{Z}_0 .

i.e.
$$P(y) = x_0 + (x_0 - y)$$
 (3.5)
Then cl $(P_0 \pi_0 \phi_n (B(x_n (B(x_0, r))) = P_0 \pi (cl \phi_n (B(x_0, r))))$ is compact subset
of $\partial B[x_0, r]$ and $P_0 \pi_0 \phi_n$ continuous function from $B(x_0, r)$ into
 $\partial B(x_0, r)$.

Since in a power metric linear space $B(x_0, \mathbf{r})$ is convex, by Rothe's theorem, a version of Schauder's theorem (see [74], p. 27) for each n, $P_0\pi_0\phi_n$ has a fixed point x_n in $B(x_0, \mathbf{r})$.

Thus
$$\mathbf{x}_{n} = P_{0}\pi_{0}\phi_{n}(\mathbf{x}_{n})$$

$$= P_{0}(\pi_{0}\phi_{n}(\mathbf{x}_{n}))$$

$$= 2 \mathbf{x}_{0} - (\pi_{0}\phi_{n}(\mathbf{x}_{n})) \text{ (using (3.5))}$$

and so $(\pi_0 \phi_n)(\mathbf{x}_n) = 2\mathbf{x}_{0} - \mathbf{x}_{146}$

We claim that x_n , x_0 , $2x_0$ $-x_n = \pi_0 \phi_n(x_n)$ and $\phi_n(x_n)$ are consecutive collinear points.

Since
$$\Im x_{n} = \pi_{0} \varphi_{n}(x_{n})$$
 implies $\Im x_{n} - \pi_{0} \varphi_{n}(x_{n}) = 0$ i.e.
 $\alpha x_{0} + \beta x_{n} + \gamma \pi_{0} \varphi_{n}(x_{n}) = 0$ with $\alpha + \beta + \gamma = 0$ i.e. $x_{0} + \beta x_{n} + \gamma \cdot \pi_{0} \varphi_{n}(x_{n}) / (\beta + \gamma)$
Also, by the definition of π (x) we have
 $\pi(\phi_{n}(x_{n})) = x_{0} + (r(\phi_{n}(x_{n}) - x_{0})) / d(\phi_{n}(x_{n}), x_{0})$
 $= r\phi_{n}(x_{n}) / d(\phi_{n}(x_{n}), x_{0}) + (1 - r / [d(\phi_{n}(x_{n}), x_{0}])x_{0})$
 $\Rightarrow 1 \cdot \pi_{0} \phi_{n}(x_{n}) - r\phi_{n}(x_{n}) / d(\phi_{n}(x_{n}), x_{0}) - (1 - r / d(\phi_{n}(x_{n}), x_{0}))x_{0} = 0$
 $\Rightarrow \alpha \cdot \pi_{0} \phi_{n}(x_{n}) + \beta \phi_{n}(x_{n}) + \gamma \cdot x_{0} = 0$
with $\alpha + \beta + \gamma = 1 - r / d(\phi_{n}(x_{n}), x_{0}) - 1 + r / d(\phi_{n}(x_{n}), x_{0}) = 0$
 $\Rightarrow \pi(\phi_{n}(x_{n}) = (\beta \phi_{n}(x_{n}) + \gamma \cdot x_{0}) / (\beta + \gamma)$

d
$$(\phi_n(\mathbf{x}_n), \mathbf{x}_n) \ge d(\pi_0 \phi_n(\mathbf{x}_n), \mathbf{x}_n)$$

= $d(2\mathbf{x}_0 - \mathbf{x}_n, \mathbf{x}_n)$
= $d(\mathbf{x}_n, \mathbf{x}_0) + d(\mathbf{x}_0, 2\mathbf{x}_0 - \mathbf{x}_n), as \mathbf{x}_n, \mathbf{x}_0$
and $2\mathbf{x}_0 - \mathbf{x}_n$ are collinear

$$= d(x_n, x_0) + d(x_n, x_0)$$

= 2d(x_n, x_0)

Now we prove that $d(x_n, x_0) = r$ Since $\pi_0 \phi_n : B(\mathbf{x}_0, r) \to \partial B(\mathbf{x}_0, r)$ and $\mathbf{x}_n \in B(\mathbf{x}_0, r)$ implies $(\pi_0 \phi_n(\mathbf{x}_n) \mathbf{x}_0) = r$ i.e d $(2\mathbf{x}_0 - \mathbf{x}_n, \mathbf{x}_0) = r$, i.e. d $(\mathbf{x}_n, \mathbf{x}_0) = r$. **Hence d** $(\phi_n(\mathbf{x}_n), \mathbf{x}_n) \ge 2r$.

In addition for each m in M,

 $d(x_n, m) \ge d(x_n, \phi_n(x_n)) - 1/n \text{ (using (3.4))}$

$$\geq 2r - 1/n \tag{3.6}$$

Again M is boundedly compact, the sequence $\{\phi_n(\mathbf{x}_n)\}$ in $M \cap B(\mathbf{x}_0, 3\mathbf{r}+1)$ has a convergent subsequent with limit u in x. Then the sequence $\{P_o \pi_0 \phi_n(\mathbf{x}_n)\}$ has a convergent subsequence with limit $P_o \pi(u) = \mathbf{x}_\infty \in \partial B(\mathbf{x}_0, \mathbf{r})$.

Moreover, for each m in M,

$$d((\mathbf{x}_{\infty} - \mathbf{x}_{0}) + (\mathbf{x}_{0} - m), 0) = d((\mathbf{x}_{\infty} - m, 0))$$

$$= d(\mathbf{x}_{\infty}, m)$$

$$\geq 2r(\text{using } (3.6))$$
If **m** is in $P_{M}(x_{o})$ then $d(\mathbf{x}_{0}, m) = d(\mathbf{x}_{0}, m) = r$.
Also $d(x_{\infty}, x_{0}) = r$ as $\mathbf{x}_{\infty} \in \partial B(\mathbf{x}_{0}, r)$. So
$$d((\mathbf{x}_{\infty} - \mathbf{x}_{0}) + (\mathbf{x}_{0} - m), 0) = d(\mathbf{x}_{\infty} - \mathbf{x}_{0}, m - \mathbf{x}_{0})$$

$$\leq d(\mathbf{x}_{\infty} - \mathbf{x}_{0}, 0) + d(m - \mathbf{x}_{0}, 0)$$

Implies

$$d(\mathbf{x}_{0} - \mathbf{x}_{0}) + d(\mathbf{x}_{0} - m), 0) \le 2r$$
 (3.8)

Combining (3.7) and (3.8) we have

$$d((\mathbf{x}_{\infty} - \mathbf{x}_{0}) + d(\mathbf{x}_{0} - m), 0) = 2r$$

= $\mathbf{r} + \mathbf{r}$
= $d((\mathbf{x}_{\infty} - \mathbf{x}_{0}), 0) + d((\mathbf{x}_{0} - m), 0)$ (3.9)

Since (X, d) is pseudo strictly Convex, (3.9) implies

 $x_{\infty} - x_{0,} = t(x_0 - m)$ for some t > 0.

i.e. m = $[(1+t) x_0 - x_{\infty}]/t$ implying $P_M(x_0) = [(1+t) x_0 - x_{\infty}]/t$ for

t>0. Hence M is Chebyshev.

In strictly convex normed linear spaces this theorem was proved by Paul C. Kainen et al [2] and the above proof is an extension of the one given in [2].

Corollary 3.1 [5]. Let (X, d) be a convex metric linear space, M a boundedly compact subset of X and x an element of X for $r=d(x_0, M)>0$. Suppose that for some ε , with $0 < \varepsilon < 2r$ there exists continuous ε -near best approximation $\phi: B(x,r) \to M$ of B (x, r) by the Then there exists a point x_1 in $\partial B(x,r)$ such that d $(x_1, m) \ge 2r-\varepsilon$.

Proof. The proof of this is contained in the first part of the proof of Theorem 3.2 (upto equation (3.6))

If M is an approximatively compact set in a metric space, then $P_M(x)$ is compact for each x in X. Indeed, any $\{m_n\}$ in $P_M(x)$ is a sequence in M with $d(x, m_p) = d(x, M)$ and by the definition of approximative compactness, has a convergent subsequence with limit in M and hence in $P_M(x)$. Using this we have:

Theorem 3.3 [5]. Let M be an approximatively compact set in a metric linear space (X, d) and x an element of X. Suppose that for each $\varepsilon > 0$, there is a continuous ε -near best approximation $\phi_{\varepsilon}:(x) \cup P_{M}(x) - - > M$. Then $P_{M}(x)$ is connected. For normed linear spaces the proof of Theorem 3.3 is given in [2] and that proof can easily be extended to metric linear spaces.

Corollary 3.2 [5].Let (X, d) be a metric linear space and M an approximately (i.e., $P_M(x)$ is non-empty and countable for each x in X). Suppose that for each $\varepsilon > 0$ there exists a continuous ε -near best approximation $\phi: x \to M$ of X by M. Then M is a Chebyshev set.

Proof. By Theorem 3.3 for each x, $P_M(x)$ is connected and since the only countable connected set is a singleton, M is Chebyshov,

Corollary 3.3 [5]. Let (X, d) be a metric linear space, M a closed, boundary compact subset of X, and x an element of X with r = d (x, M) >0. If for each $\varepsilon > 0$, there exists continuous ε nearbest approximation $\phi: B(x,r) \to M$ of B(x,r) with then $P_M(x)$ is connected.

Proof Since a closed , boundedly compact subset is approximatively compact ([6], 383), proof follows from Theorem 3.3 .

REFERENCES

1. Sever Silvestru Dragomir : on Approximation of Continuous Linear Functionals in Normed Linear Spaces, Analele Universitatii din Timisora, 29(1991), 51-58.

- 2. Paul C. Kainen, Vera Kurkova and Andrew Yogy: Geometry and Topology of Continuous Best and Near Best Approximation, J. Approx. Theory, 105(2000), 252-262.
- 3. T.D. Narang : On Certain Characterizations of Best Approximations in Metric Linear Spaces, Pure and Applied Mathematica Sciences, 4(1976), 1-2.
- 4 .T.D. Narang : Applications of Fixed Point Theorems to Approximation Theory, Mat. Vesnik, 36(1984), 69-75.
- 5 Meenu Sharma and T.D. Narang : On -Birkhoff Orthogonality and -Near Best Approximation, Journal of the Korea Society of Mathematical Education, 8(2001), 153-162.
- 6 Ivan Singer : Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer- Verlag, New York(1970)
- 7 D.R. Smart : Fixed Point Theorems, Cambridge Univ. Press, Cambridge, U.K. (1974).

*Dr. Meenu Sharma Principal A.S. College for Women, Khanna

-x----

