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MODULE* – 2 

ON BEST APPROXIAMTION AND METRIC PROJECTIONS 

 For a given point x and a given set G of a metric space (X,d), a 

point 0g єG satisfying d (x,g)=inf {d(x,g):geG} is called a best 

approximation to x in G and the map which takes each point xeX to set 

of its best approximation map or the metric  projection of X onto G. This 

module dealing with best approximation and metric projections, has been 

divided into two sections. First section is concerned with best 

approximation in pseudo strictly convex metric linear spaces and second 

section with multi-valued metric projections in convex spaces. 

 The notion of pseudo strict convexity in metric  linear spaces was 

introduced and discussed by K.P.R. Sastry and S.V.R. Naidu in [6] and 

[7]. It was shown by Paul C.Kainen et al [4] that the existence of a 

continuous best approximation in a strictly convex normed linear space 

X and taking values in a suitable subset M of X implies  that M has the 

unique best approximation property. In the first section of this module, 

we extend this result of Paul C.Kainen et al to pseudo strictly convex 

metric linear spaces. 

 S.B.Stockin [14] provod that if UM= {xcX: Card PM (x) <1}  then UM 

=x for every subset M of X iff X is a strictly convex normed linear space. 
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This result was extended to strictly convex metric spaces by T.D. Narang 

[5]. A question that arises is what happens in spaces which are not 

strictly convex? To answer this, we have discussed the characterization 

of multi-valued metric projection PM in spaces which are not strictly 

convex in the second section. For normed linear spaces this result  was 

proved by Ioan Serb in [8]. We have also proved that for a non-void 

proper subset M of a complete convex metric linear space (X,d) PM 

cannot be a countably multi-valued metric projection. We have given a 

characterization of the semi-metric linear spaces in terms of finitely 

multi-valued metric projections. In [9], it was proved  that if M is a 

strongly proximinal subset of a Banach space X, then Card PM (x)>c for 

every xєX\M, and the completeness of the space is essential for the 

validity of the result. In [10], the same result was proved for complete 

metrizable locally convex spaces i.e. in Frechet spaces. In this section, we 

have proved that for a strongly proximinal set M in a complete convex 

metric space (X,d) , Cad ( )
M

P x ≥ c for all \x X M . 

2.1 Best Approximation 

               This section deals with best approximation in pseudo strictly 

convex metric linear spaces. To begin with , we recall a few definitions . 

Definition 2.1.1 [15] A metric linear space (X,d) is said to be convex if for 

x, y X ,  [0,1] 

( , (1 ) ) ( , ) (1 ) ( , )d u x y d u x d u y         

for all u X. 
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Definition 2.1.2 [11] A metric linear space (X,d) is said to be pseudo 

strictly convex (P.S.C.) if given x  0 , y  0,d(x+y,0)=d(x,0)+d(y,0) implies 

y=tx for some t>0.  

Strict convexity and pseudo strictly convexity are equivalent in  normed 

linear spaces (see e.g. [1] p. 122 or  [7])but not in metric linear spaces[7]. 

(For strict convexity in normed linear spaces one may refer to [3]).                                                    

         The following example shows that a P.S.C. metric linear space need 

not be S.C. 

Example 2.1.1 [7]  

 Let    f : R R   be defined by   

 if 0 1
f(t)

1  if  t  1

t t  
  

 
 

and d be the metric on R defined by d(0,t)= ( )f t  for all tR. Then (R,d) is 

P.S.C , but not S.C.  

Definition 2.1.3 Let (X,d) be a metric space and M a subset of X. Given a 

non-empty subset A of X, a best approximation of A by M is a function 

: A M  such that ( , ( )) ( , )d x x d x M  for x I n A.  

      The following theorem deals with the uniqueness of best 

approximation: 

Theorem 2.1.1 [ 12] Let (X,d) be a convex metric linear space with pseudo 

strict convexity and let M a subset of X, let : X M  be a continous 

best approximation of X by M. Then M is a Chebyshev set. 

Proof : Since : X M  is  best approximation of X by M, 

( , ( )) ( , )d x x d x M  for all x X i.e. ( )
M

P x  is non-empty for each x X.                                                     

 

Now we show that ( )
M

P x  is a singleton . For any x in X, let m ( )
M

P x  . 

Suppose y is on the line segment [m,x) and u ( )
M

P y . Then  

           d(u,x)    d(u, y) + d( y, x) 

  d(m, y) + d( y, x) 

                      = d(m,x)                      (as y[m,x) ) 

  d(u,x) as m ( )
M

P x . 

            Therefore , the inequalities are all equalities and so 

d(x,u)=d(x,m)=d(x,M) i.e. u ( )
M

P x  and therefore ( )
M

P y  ( )
M

P x . 
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           Also m ( )
M

P y  as d(y ,u)+ d(y ,x)= d(m ,y)+ d(y ,x) implies d(y ,u)= 

d(y ,m). 

         Since d(u,x)=d(u,y)+d(y,x) i.e. d(u-x,0) = d(u-y,0)+ d(y-x,0), a 

consequence of pseudo strict convexity is that u, y and x are collinear. (By 

P.S.C. u-y= t(y-x) i.e. / (1 ) / (1 )y u t tx t     and therefore u=m as u ,y , 

x are collinear and d(y,u)=d(y,m) . Hence ( )
M

P y = {m}. Since   is 

directionally continuous at x and ([ , }) { }m x m  , it follows that 

( )x m  . Thus ( )
M

P y = { ( )x } is a singleton set i.e M is a Chebyshev 

set.                                                                         

 

Note : The following result is established in the proof of Theorem 2.1.1 

without the requirement of pseudo strict convexity. 

 Let (X,d) be a convex metric linear space , M a subset of X,x an element of 

X and m an element of ( )
M

P x . Then for each y[m,x) , {m}  ( )
M

P y 

( )
M

P x . 

 

Definition 2.2.1 Let (X,d) be a  metric  space , M a subset of X. The 

mapping :
M

P X M defined by  

( ) { : ( , ) ( , )
M

P x m M d x m d x M   } 

Is called the multi – valued metric projection of X onto M.  

     By 
M

U , we denote the set  

M
U = { xX: card ( )

M
P x ≤ 1 } . 

     If card ( )
M

P x ≥ 2, we say that the metric projection is totally multi-

valued and if 2≤ card ( )
M

P x < ∞, then the metric projection is called 

finitely multi-valued .In the special case when card ( )
M

P x  = 
0

 , we say 

that the metric projection is countably multi-valued. 

 

                                                            

Definition 2.2.2 If 
M

P  is a totally multivalued metric project then M is 

strongly proximinal. 
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It is clear that every strong proximinal is proximinal and  hence closed. 

(Let M be not closed. Let x M /M . Then d(x,M)=0. Since M is 

proximinal , there exists m M such that d(x, m) =d(x, M)=0 and so x=m 

i.e. x M , a contradiction.) 

 

   It was shown in [5] that if (x,d) Is a strictly convex metric space, then 

the corresponding 
M

P a single valued metric projection. A question that 

arises is what happens in spaces which are not strictly convex. We have: 

Theorem 2.2.1 [13] Let M be an arbitrary non-void proper subset of a 

convex metric space (X, d) .Then P
M

is not a finitely multivalued metric 

projection . 

Proof Case 1  If M  = X then for every x X\M , we have ( )P x
M

=   and 

hence P
M

is not a finitely multivalued metric projection . 

Case 11 If M X, let 
0

x X\ M  then there exists a neighbourhood  

of  
0

x contained in X\ M .  

      Let r= d(
0

x , M) >0 . Suppose P
M

is a finitely multivalued metric 

projection.   

   Let 
M

P (
0

x ) =
1 2

{ , ,..., , 2}
k

m m m k  . 

Then ( , )
0

d x m r
i
 , I = 1,2,…,k. 

  Let ( , )
0 0,

y W x m
i
 , 0< <1 and 0<3 r < min

2 i k 
( , )

1
d m m

i
. 

We claim that  

(1) ( , ) ( , )
0 0

B y r B x r   

(2) ( , ) { }
0 1

B y r M m    

 

(1)  Let ( , )
0

x B y r  then  

0 0 0 0
( , ) ( , ) ( , )d x x d x y d y x   
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=  ( , ) ( ( , , ), )
0 0 1 0

d x y d W x m x  

( , ) ( , ) (1 ) ( , )
0 0 0 1 0

d x y d x x d m x      

.0 (1 )r r       

= r . 

This implies that 
0

( , )x B x r . Hence ( , ) ( , )
0 0

B y r B x r  . 

(2) Since ( , ) ( , )
0 0

B y r B x r   and ( , ) { ,..., }
0 1, 2

B x r M m m m
k

  , it follows that 

( , ) { , ,..., }
0 1 2

B y r M m m m
k

   . 

       We first show that  

(a) ( , )
1 0

m B y r  

(b) ( , ), 1,2,...,
0

m B y r i k
i

   

 

(a) Consider  

( , ) ( ( , , ), )
0 1 0 1 1

d y m d W x m m  

( , ) (1 ) ( , )
0 1 1 1

d x m d m m     

              =  r 

Which implies that ( , )
1 0

m B y r  

(b) Since  

( , ) ( , ) ( , )
1 1 0 0

d m m d m y d y m
i i
   

( ) ( , ) ( , )
0, 1 1 0

d y m d m m d m y
i i
   

3 r r    

                           =2 r 

         > r 

So ( , ), 1,2,...,
0

m B y r i k
i

   

From (a) and (b), it follows that ( , ) { }
0 1

B y r M m   . 
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We claim that 
0

y U
M

 .Consider  

( , ) ( ( , , ), )
0 1 0 1 1

d y m d W x m m  

( , ) (1 ) ( , )
0 1 1 1

d x m d m m     

 =  r. 

Thus ( , )
0 1

d y m r and so ( , )
0

d y M r                      (2.2.1) 

          Now let ( , )
0

d y M r .Then ( , ) ( , )
0 0

d y m d y M r   (using (2.2.1)) 

( , ) ( , ) { }
0 0 1

m B y r m B y r M m       .So 0 1( ) { }MP y m  and hence 

0( ) 1McardP y  which implies that 0 My U .Thus MP is not a finitely multi-

valued metric projrction contradicting the hypothesis. 

Remark 2.1.1For normed linear spaces this result was proved in [8]: 

          It may be remarked that for a convex set M in a convex metric 

space the corresponding MP isn’t a finitely multi-valued metric projection. 

    Indeed, if M is a convex set, \x X M and if 1 2, ( )Mm m P x with 1 2m m , 

then for every (0,1) we have  

1 2 1 2( , ( , , )) ( , ) (1 ) ( , )d x W m m d x m d x m      

( , ) (1 ) ( , )d x M d x M     

( , )d x M  

                    Also by the definition of ( , )d x M we have 

1 2( , ) ( , ( , , ))d x M d x W m m  as 1 2( , , )W m m M  by the convexity of M. 

                Hence 1 2( , ( , , ) ( , )d x W m m d x M  i.e. 1 2( , , )W m m M  for every (0,1)  
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The. following result on metric projection was proved by Ioan Serb [58]. 

           Let M be a non-void proper subset of a metrizable vector space X. 

If MP  is a countable multi-valued metric projection, then MP  is a perfect 

subset of X. Using this we have: 

Theorem 2.2.2[13]If (X,d) is a complete metric linear space and M a 

non-void proper subset of a  X then MP cannot be a countably multi-valued 

metric projection. 

Proof We suppose that  there exists a set M X with the property that 

MP  is a countably multi-valued metric projection. So by the above result 

of Ioan Serb, M is a perfect set. If \x X M then 0( )McardP x  . We claim 

that ( )MP x    , where ( , ( , ))S x d x M is the sphere with centre x and radius 

d(x , M) , is a perfect set. 

(a) ( )MP x is a closed set as it is an intersection of two closed sets. 

(b) ( )MP x is dense in itself.          

Indeed, if 0m is an isolated point of ( )MP x , then there exists a ball 

0( , )B m  with centre 0m and radius 0  such that 0 0( ) ( , ) { }MP x B m m  . 

           Let us consider the point 0( , , )x W x m   with 

00 \[2 ( , )] 1d x m    since  

0( , ) ( , ( , , ))d x x d x W x m   

0( , ) (1 ) ( , )d x x d x m     

0(1 ) ( , )d x m   

(1 ) ( , )d x M                (2.2.2) 
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It follows that \x X M  . 

Now  

0( , )d x m = 0 0( ( , , ), )d W x m m  

0 0 0( , ) (1 ) ( , )d x m d m m     

0( , )d x m                          (2.2.3) 

\ 2 . 

On the other hand, let 0,m M m m  . Then 0( ) \{ }Mm P x m or 

( , ( , ))m B x d x M . We shall prove that 0 0( , ) ( , )d x m d x m  in both the 

cases. 

             If 0( ) \{ }Mm P x m , we have 0 0( , ) ( , ) ( , )d x m d m m d x m   . 

The proof of which is as under : 

0( , )d x m = 0(( ) ( ),0)d x m m m     

0(( ),0) (( ),0)d x m d m m     

0 0( , ) ( , ) ( , )d x m d x m d m m                                  (2.2.4) 

and 

0 0( , ) (( ) ( ),0)d m m d m x x m      

0( , ) ( , )d m x d x m    

0 0( , ) ( , ) ( , )d x m d m m d m x     (2.2.5) 

Combining (2.2.4) and (2.2.5) , we get the result. 
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So 0 0( , ) ( , ) ( , )d x m d m m d x m    

/ 2   (Since 0 0{ } ( ) ( , )Mm m P x B m    and ( )Mm P x ) 

 = / 2  

       0( , ).d x m  

If ( , ( , ))m B x d x M  we have  

( , ) ( , ) ( , )d x m d x m d x x    

( , ) (1 ) ( , )d x M d x M    (as (2.2.2 ) ( , ) (1 ) ( , )d x x d x M    ) 

= ( , )d x M  

0( , )d x m (as (4.2.3) 0 0( , ) ( , ) ( , )d x m d x m d x M    ). 

 

Hence in both the cases we get that 0( , ) ( , )d x m d x m  . It 

follows that 0( ) { }MP x m   and \x X M  . So MP  is not countably multi-

valued, a contradiction. Therefore ( )MP x has no isolated point. Thus 

( )MP x is dense in itself and hence a perfect set .But if ( )MP x is a perfect set 

of a complete metric space X , then ( )MP x is an uncountable set (see 

[2],p.72), contradicting our supposition. The theorem is thus proved. 

Remark 2.2.2 For Banach space this result was proved by Ioan Serb[8]. 

                          Next we shall give a characterization of the semi-metric 

linear spaces which aren’t metric linear spaces in terms of finitely 

multivalued metric projections. 

Theorem 2.2.3[13] . In every semi-metric linear space X, which isn’t a 

metric linear space, there exist sets 2 3, ,..., ,...nM M M as well as the sets A 

and B such that 
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1
 
 
 

( )
nMcardP x =n , for every \ nx X M and every n N , and 

11
 
 
 

0( )AcardP x   for every \x X A , 

111
 
 
 

( )BcardP x c for every \x X B . 

Proof . Since X is a semi-metric but not a metric linear space, there exists 

an  

element 0 0x  with 0( ,0) 0d x  .We shall prove that the sets  

2 0 0{ , \ 2}M x x , 

3 0 0 0{ , \ 2, \ 3}M x x x , 

                   -------------------------------- 

                   -------------------------------- 

0 0 0 0{ , \ 2, \ 3,..., \ }nM x x x x n , 

               ----------------------------------------- 

            --------------------------------------------- 

0 0 0 0{ , \ 2, \ 3,..., \ ,...}A x x x x n  

and  0 (0,1){ }B x    have the properties 1
 
 
 

---- 111
 
 
 

 respectively. 

1
 
 
 

      To prove ( )
nMCardP x =n , for every \ nx X M and every n N . 

            Let \ nx X M , then we have  

              d(x , m)= d(x-m ,0 ) 

  d(x ,0 )+ d(-m ,0 ) 

                           = d(x ,0 )+ d( m ,0 )                                                   (2.2.6) 

We claim that d(m,0)=0 for all nm M . 

nm M 0 \m x n   for same natural number n.                

Now for (0,1) ,We have  
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0 0( ,0) ( (1 )0,0)d x d x      

0( ,0) (1 ) (0,0)d x d     

0( ,0)d x . 

For 1\ ,n  We get 0 0((1\ ) ,0) (1\ ) ( ,0) 0d n x n d x  . 

Also 0( \ ,0) 0d x n  implies that 0( \ ,0) 0d x n  i.e. d(m,0)=0 for all nm M .So , 

(2.2.6) implies ( , ) ( ,0).d x m d x  

            Also ( ,0) ( ,0)d x d x m m    

( ,0) ( ,0)d x m d m    

( , )d x m . 

Hence, we have ( ,0) ( , )d x d x m for every nm M  and so ( )
nMcardP x =

.ncardM n  

11
 
 
 

 As discussed above for any m A , we have 0 \ ,m x n n N  and 

( ,0) ( , )d x d x m for all m A which, further implies that ( )AcardP x cardA . 

Since A is infinite countable set, by definition of 0 , we have 

0( )AcardP x cardA   . 

111
 
 
 

For m B we have 0m x for 0 1  . Again as discussed in 1
 
 
 

we have 

( ,0) ( , )d x d x m for all m B which implies ( ) .BcardP x B Since B is an infinite 

uncountable set, ( ) .BcardP x cardB  

 

Corollary 2.2.1. The convex semi-metric linear space (X,d) isn’t a metric 

linear space if and only if there exists a subset M of X such that MP is a 

finitely multi-valued metric projection. 

ProofSince X is a convex semi-metric linear space but not a metric linear 

space, there exists an element 0 0x  with 0( ,0) 0d x  . Then as discussed in 
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Theorem 4.2.3, there exists a set 0 0 0 0{ , \ 2, \ 3,..., \ }nM M x x x x n  with the 

property that ( )
nMcardP x = ncardM n  i.e. MP is a finitely multi-valued metric 

projection. 

              Conversly, suppose that there exists a subset M of X such that MP

is a finitely multi-valued metric projection. We are to prove that X isn’t a 

metric linear space. 

             On contrary, if we assume X to be a metric linear space, then we 

get from Theorem 2.2.1 that MP isn’t a finitely multi-valued metric 

projection, a contradiction to the hypothesis. 

Remark 2.2.3For semi-normed spaces the above result was proved in [8]. 

                            Considering M to be strongly proximinal subset of a 

Banach space X, Ioan Serb [9] proved that ( )BcardP x c for every 

\ ,x X M and the completeness of the space is essential for the validity of 

the result. In  [10], the same result was proved for complete metrizable 

locally convex spaces i.e. for Frachet spaces. 

             In convex metric spaces we have: 

Theorem 2.2.4[12]. If M is strongly proximinal set in a complete convex 

metric space (X, d) , then ( )BcardP x c  for all \ ,x X M  

Proof. Since M is strongly proximinal set, M is closed and so is ( )MP x 

( , ( , ))M B x d x M . We shall show that if \x X M , ( )MP x does not contain 

isolated points. 

               Suppose 0 ( )Mm P x is an isolated point of ( )MP x for a given 

\x X M .Then there exists an (0.1)  such that 0 0( , ( , )) ( ) { }.MB m d x M P x m                      

(2.2.7) 

     Let 0 0( , , \ 3)x W x m  , we have  

0 0( , ) ( , ( , , \ 3))d x x d x W x m   
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0(1 \ 3) ( , )d x m                    (by the convexity of X) 

(1 \ 3) ( , )d x M   

( , )d x M , 

It follows that 0 \x X M . On the other hand  

0 0 0 0( , ) ( ( , , \ 3), )d x m d W x m m  

0\ 3 ( , )d x m                                 (by the convexity of X) 

( \ 3) ( , )d x M .                                                                                 (2.2.8) 

 

This implies  

0( , ) ( \ 3) ( , )d x m d x M .                                                                         (2.2.9) 

Let .m M If ( )Mm P x we have  

0 0( , ) ( , ) ( , )d x m d x m d x x   

0( , ) ( , )d x M d x x   

( , ) (1 \ 3) ( , )d x M d x M    

( \ 3) ( , )d x M  

i.e.     0( , ) ( \ 3) ( , )d x m d x M   , 

so 0( )Mm P x ( if 0( )Mm P x then 0 0 0 0( , ) ( , ) ( , )d x m d m m d m x  ( \ 3) ( , )d x M by  

(2.2.9)) 

If   0( ) \{ }Mm P x m , we have 

0 0 0( , ) ( , ) ( , )d x m d m m d m x   

( , ) ( \ 3) ( , )d x M d x M                             (by (2.2.7) and (2.2.8)) 

2( \ 3) ( , )d x M  

and   so     0( )Mm P x  . 
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Thus for all 0 ,m m m M  , we have  0( )Mm P x   and it follows that 

0( ) { }MP x m  and this contradicts the fact that M is a strongly proximinal 

set. 

                  Thus ( )MP x is a closed set and has no isolated point i.e. ( )MP x  is 

a perfect set in X for all \x X M .Since every perfect subset of a complete 

metric space has the cardinality at least c (Theorem 6.65 , p.72 [2]),  

( )BcardP x c  for all \ ,x X M  
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